51 resultados para ATP-BINDING-SITES
Resumo:
Previous studies have examined the arrangement of regulatory elements along the apolipoprotein B (apoB) promoter region (-3067 to +940) and a promoter fragment extending from nucleotides -150 to +124 has been demonstrated to be essential for transcriptional activation of the apoB gene in hepatic and intestinal cells. It has also been shown that transcriptional activation of apoB requires a synergistic interaction between hepatic nuclear factor-4 (HNF-4) and CCAAT/enhancer-binding protein a (C/EBPa) transcription factors. Here, we have examined the hypothesis that HNF-4 factor binding to DNA may induce a DNA helix bend, thus facilitating the communication with a C/EBPa factor located one helix turn from this HNF-4 factor in the apoB promoter. A gel electrophoretic mobility shift assay using wild type double-stranded oligonucleotides or modified wild type duplex oligonucleotides with 10 nucleotides inserted between HNF-4 and C/EBPa factor motifs showed similar retarded complexes, indicating that HNF-4 and C/EBPa factors interact independently of the distance between binding sites. However, when only one base, a thymidine, was inserted at the -71 position of the apoB promoter, the complex shift was completely abolished. In conclusion, these results regarding the study of the mechanisms involving the interaction between HNF-4 and C/EBPa factors in the apoB promoter suggest that the perfect 5'-CCCTTTGGA-3' motif is needed in order to facilitate the interaction between the two factors.
Resumo:
Leukocyte adhesion is of pivotal functional importance. The adhesion involves several different adhesion molecules, the most important of which are the leukocyte ß2-integrins (CD11/CD18), the intercellular adhesion molecules, and the selectins. We and others have extensively studied the specificity and binding sites in the integrins and the intercellular adhesion molecules for their receptors and ligands. The integrins have to become activated to exert their functions but the possible mechanisms of activation remain poorly understood. Importantly, a few novel intercellular adhesion molecules have been recently described, which seem to function only in specific tissues. Furthermore, it is becoming increasingly apparent that changes in integrins and intercellular adhesion molecules are associated with a number of acute and chronic diseases.
Resumo:
Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp), a plasma membrane ATP-binding cassette (ABC) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD) which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR). In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.
Resumo:
Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP) = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs) have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h) is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.
Resumo:
Activation of Th1 or Th2 cells is associated with production of specific immunoglobulin isotypes, offering the opportunity to use antibody measurement for evaluation of T cell function. Schistosomiasis and visceral leishmaniasis are diseases associated with Th2 activation. However, an IgE response is not always detected in these patients. In the present study we evaluated specific IgE antibodies to S. mansoni and L. chagasi antigens by ELISA after depletion of serum IgG with protein G immobilized on Sepharose beads or RF-absorbent (purified sheep IgG antibodies anti-human IgG). In schistosomiasis patients, specific IgE to SWAP antigen was demonstrable in only 10 of 21 patients (48%) (mean absorbance ± SD = 0.102 ± 0.195) when unabsorbed serum was used. Depletion of IgG with protein G increased the number of specific IgE-positive tests to 13 (62%) and the use of RF-absorbent increased the number of positive results to 20 (95%) (mean absorbances ± SD = 0.303 ± 0.455 and 0.374 ± 0.477, respectively). Specific IgE anti-L. chagasi antibodies were not detected in unabsorbed serum from visceral leishmaniasis patients. When IgG was depleted with protein G, IgE antibodies were detected in only 3 (11%) of 27 patients, and the use of RF-absorbent permitted the detection of this isotype in all 27 visceral leishmaniasis sera tested (mean absorbance ± SD = 0.104 ± 0.03). These data show that the presence of IgG antibodies may prevent the detection of a specific IgE response in these parasite diseases. RF-absorbent, a reagent that blocks IgG-binding sites and also removes rheumatoid factor, was more efficient than protein G for the demonstration of specific IgE antibodies.
Resumo:
The in utero exposure of hamsters to low doses of diazepam results in impaired host defense against Mycobacterium bovis during adulthood. Delayed developmental immunotoxicity, however, represents a specific situation that might not be general. The present experiment was undertaken to investigate the effects of diazepam on hamster resistance to M. bovis using adult animals. The effects of diazepam treatment on serum cortisol levels were also studied. Adult hamsters (N = 10 for each group) were treated with diazepam (E1 = 1.0, E2 = 2.0 or E3 = 3.0 mg kg-1 day-1 subcutaneously) or with control solution (C) for 30 days. Seven days after the beginning of the treatment, the animals received identical inoculum concentrations of M. bovis. Hamsters treated with the higher (2.0 and 3.0 mg kg-1 day-1) doses of diazepam exhibited: 1) increased granuloma areas in the liver (C = 1.81 ± 1.39, E2 = 10.29 ± 4.64 and E3 = 15.80 ± 4.82) and lung (C = 0.54 ± 0.55, E2 = 6.28 ± 3.85 and E3 = 6.31 ± 3.56) and 2) increased scores of M. bovis colony-forming units isolated from liver (C = 2.0, E2 = 3.0 and E3 = 3.5), lung (C = 1.0, E2 = 3.0 and E3 = 3.5) and spleen (C = 1.0, E2 = 2.5 and E3 = 4.0). These effects were dose dependent, and were not detected or were less severe in animals treated with the lowest (1.0 mg/kg) dose of diazepam as well as in those of the control group. Furthermore, diazepam treatment (3.0 mg kg-1 day-1 for 30 days) increased (E3 = 71.32 ± 2.99; N = 10) the serum levels of cortisol compared to control hamsters (C = 22.61 ± 2.75; N = 10). The present data, that demonstrate an impaired defense against M. bovis in adult hamsters treated with diazepam, were tentatively explained on the basis of a direct and/or indirect action of diazepam on the cytokine network. The effects may be related to stimulation of peripheral benzodiazepine receptor binding sites (PBR) by macrophages and/or lymphocytes, or they may be mediated by PBR stimulation of the adrenals.
Resumo:
Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 µM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 µM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 µM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.
Resumo:
A 40-kb DNA region containing the major cluster of nif genes has been isolated from the Azospirillum brasilense Sp7 genome. In this region three nif operons have been identified: nifHDKorf1Y, nifENXorf3orf5fdxAnifQ and orf2nifUSVorf4. The operons containing nifENX and nifUSV genes are separated from the structural nifHDKorf1Y operon by about 5 kb and 10 kb, respectively. The present study shows the sequence analysis of the 6045-bp DNA region containing the nifENX genes. The deduced amino acid sequences from the open reading frames were compared to the nif gene products of other diazotrophic bacteria and indicate the presence of seven ORFs, all reading in the same direction as that of the nifHDKorf1Y operon. Consensus sigma54 and NifA-binding sites are present only in the promoter region upstream of the nifE gene. This promoter is activated by NifA protein and is approximately two-times less active than the nifH promoter, as indicated by the ß-galactosidase assays. This result suggests the differential expression of the nif genes and their respective products in Azospirillum.
Resumo:
We describe the impact of subtype differences on the seroreactivity of linear antigenic epitopes in envelope glycoprotein of HIV-1 isolates from different geographical locations. By computer analysis, we predicted potential antigenic sites of envelope glycoprotein (gp120 and gp4l) of this virus. For this purpose, after fetching sequences of proteins of interest from data banks, values of hydrophilicity, flexibility, accessibility, inverted hydrophobicity, and secondary structure were considered. We identified several potential antigenic epitopes in a B subtype strain of envelope glycoprotein of HIV-1 (IIIB). Solid- phase peptide synthesis methods of Merrifield and Fmoc chemistry were used for synthesizing peptides. These synthetic peptides corresponded mainly to the C2, V3 and CD4 binding sites of gp120 and some parts of the ectodomain of gp41. The reactivity of these peptides was tested by ELISA against different HIV-1-positive sera from different locations in India. For two of these predicted epitopes, the corresponding Indian consensus sequences (LAIERYLKQQLLGWG and DIIGDIRQAHCNISEDKWNET) (subtype C) were also synthesized and their reactivity was tested by ELISA. These peptides also distinguished HIV-1-positive sera of Indians with C subtype infections from sera from HIV-negative subjects.
Resumo:
We investigated the acute effects of centrally acting antihypertensive drugs on the microcirculation of pentobarbital-anesthetized spontaneously hypertensive rats (SHR). The effects of the sympatho-inhibitory agents clonidine and rilmenidine, known to activate both alpha2-adrenoceptors and nonadrenergic I1-imidazoline binding sites (I1BS) in the central nervous system, were compared to those of dicyclopropylmethyl-(4,5-dimethyl-4,5-dihydro-3H -pyrrol-2-yl)-amine hydrochloride (LNP 509), which selectively binds to the I1BS. Terminal mesenteric arterioles were observed by intravital microscopy. Activation of the central sympathetic system with L-glutamate (125 µg, ic) induced marked vasoconstriction of the mesenteric microcirculation (27 ± 3%; N = 6, P < 0.05). In contrast, the marked hypotensive and bradycardic effects elicited by intracisternal injection of clonidine (1 µg), rilmenidine (7 µg) and LNP 509 (60 µg) were accompanied by significant increases in arteriolar diameter (12 ± 1, 25 ± 10 and 21 ± 4%, respectively; N = 6, P < 0.05). The vasodilating effects of rilmenidine and LNP 509 were two-fold higher than those of clonidine, although they induced an identical hypotensive effect. Central sympathetic inhibition elicited by baclofen (1 µg, ic), a GABA B receptor agonist, also resulted in vasodilation of the SHR microvessels. The acute administration of clonidine, rilmenidine and LNP 509 also induced a significant decrease of cardiac output, whereas a decrease in systemic vascular resistance was observed only after rilmenidine and LNP 509. We conclude that the normalization of blood pressure in SHR induced by centrally acting antihypertensive agents is paralleled by important vasodilation of the mesenteric microcirculation. This effect is more pronounced with substances acting preferentially (rilmenidine) or exclusively (LNP 509) upon I1BS than with those presenting important alpha2-adrenergic activity (clonidine).
Resumo:
Histamine release induced by plant lectins was studied with emphasis on the carbohydrate specificity, external calcium requirement, metal binding sites, and mast cell heterogeneity and on the importance of antibodies bound to the mast cell membrane to the lectin effect. Peritoneal mast cells were obtained by direct lavage of the rat peritoneal cavity and guinea pig intestine and hamster cheek pouch mast cells were obtained by dispersion with collagenase type IA. Histamine release was induced with concanavalin A (Con A), lectins from Canavalia brasiliensis, mannose-specific Cymbosema roseum, Maackia amurensis, Parkia platycephala, Triticum vulgaris (WGA), and demetallized Con A and C. brasiliensis, using 1-300 µg/ml lectin concentrations applied to Wistar rat peritoneal mast cells, peaking on 26.9, 21.0, 29.1, 24.9, 17.2, 10.7, 19.9, and 41.5%, respectively. This effect was inhibited in the absence of extracellular calcium. The lectins were also active on hamster cheek pouch mast cells (except demetallized Con A) and on Rowett nude rat (animal free of immunoglobulins) peritoneal mast cells (except for mannose-specific C. roseum, P. platycephala and WGA). No effect was observed in guinea pig intestine mast cells. Glucose-saturated Con A and C. brasiliensis also released histamine from Wistar rat peritoneal mast cells. These results suggest that histamine release induced by lectins is influenced by the heterogeneity of mast cells and depends on extracellular calcium. The results also suggest that this histamine release might occur by alternative mechanisms, because the usual mechanism of lectins is related to their binding properties to metals from which depend the binding to sugars, which would be their sites to bind to immunoglobulins. In the present study, we show that the histamine release by lectins was also induced by demetallized lectins and by sugar-saturated lectins (which would avoid their binding to other sugars). Additionally, the lectins also released histamine from Rowett nude mast cells that are free of immunoglobulins.
Resumo:
Most breast cancer risk factors are associated with prolonged exposure of the mammary gland to high levels of estrogens. The actions of estrogens are predominantly mediated by two receptors, ERα and ERβ, which act as transcription factors binding with high affinity to estrogen response elements in the promoter region of target genes. However, most target genes do not contain the consensus estrogen response elements, but rather degenerated palindromic sequences showing one or more mutations and other ER-binding sites such as AP-1 and SP-1. Using the differential display reverse transcription-polymerase chain reaction technique, our group identified several genes differentially expressed in normal tissue and in ER-positive and ER-negative primary breast tumors. One of the genes shown to be down-regulated in breast tumors compared to normal breast tissue was the PHLDA1 (Pleckstrin homology-like domain, family A, member 1). In the present study, we investigated the potential of PHLDA1 to be regulated by estrogen via ER in MCF-7 breast cancer cells. The promoter region of PHLDA1 shows an imperfect palindrome, an AP-1- and three SP-1-binding sites potentially regulated by estrogens. We also assessed the effects of 17β-estradiol on PHLDA1 mRNA expression in MCF-7 breast cancer cells. MCF-7 cells exposed to 10 nM 17β-estradiol showed more than 2-fold increased expression of the PHLDA1 transcripts compared to control cells (P = 0.05). The anti-estrogen ICI 182,780 (1 µM) inhibited PHLDA1 mRNA expression and completely abolished the effect of 10 nM 17β-estradiol on PHLDA1 expression (P < 0.05), suggesting that PHLDA1 is regulated by estrogen via ER.
Resumo:
The α-MRE is the major regulatory element responsible for the expression of human α-like globin genes. It is genetically polymorphic, and six different haplotypes, named A to F, have been identified in some population groups from Europe, Africa and Asia and in native Indians from two Brazilian Indian tribes. Most of the mutations that constitute the α-MRE haplotypes are located in flanking sequences of binding sites for nuclear factors. To our knowledge, there are no experimental studies evaluating whether such variability may influence the α-MRE enhancer activity. We analyzed and compared the expression of luciferase of nine constructs containing different α-MRE elements as enhancers. Genomic DNA samples from controls with A (wild-type α-MRE) and B haplotypes were used to generate C-F haplotypes by site-directed mutagenesis. In addition, three other elements containing only the G→A polymorphism at positions +130, +199, and +209, separately, were also tested. The different α-MRE elements were amplified and cloned into a plasmid containing the luciferase reporter gene and the SV40 promoter and used to transiently transfect K562 cells. A noticeable reduction in luciferase expression was observed with all constructs compared with the A haplotype. The greatest reductions occurred with the F haplotype (+96, C→A) and the isolated polymorphism +209, both located near the SP1 protein-binding sites believed not to be active in vivo. These are the first analyses of α-MRE polymorphisms on gene expression and demonstrate that these single nucleotide polymorphisms, although outside the binding sites for nuclear factors, are able to influence in vitro gene expression.
Resumo:
Helicobacter pylori adhesion to gastric epithelial cells constitutes a key step in the establishment of a successful infection of the gastric mucosa. The high representation of outer membrane proteins in the bacterial genome suggests the relevance of those proteins in the establishment of profitable interactions with the host gastric cells. Gastric epithelial cells are protected by a mucous layer gel, mainly consisting of the MUC5AC and MUC6 mucins. In addition to this protective role, mucins harbor glycan-rich domains that constitute preferential binding sites of many pathogens. In this article we review the main players in the process of H. pylori adhesion to gastric epithelial cells, which contribute decisively to the high prevalence and chronicity of H. pylori infection. The BabA adhesin recognizes both H-type 1 and Lewis b blood-group antigens expressed on normal gastric mucosa of secretor individuals, contributing to the initial steps of infection. Upon colonization, persistent infection induces an inflammatory response with concomitant expression of sialylated antigens. The SabA adhesin mediates H. pylori binding to inflamed gastric mucosa by recognizing sialyl-Lewis a and sialyl-Lewis x antigens. The expression of the BabA and SabA adhesins is tightly regulated, permitting the bacteria to rapidly adapt to the changes of glycosylation of the host gastric mucosa that occur during infection, as well as to escape from the inflammatory response. The growing knowledge of the interactions between the bacterial adhesins and the host receptors will contribute to the design of alternative strategies for eradication of the infection.
Resumo:
Refractory and relapsed leukemia is a major problem during cancer therapy, which is due to the aberrant activation of Wnt/β-catenin signaling pathway. Activation of this pathway is promoted by wingless (Wnt) proteins and induces co-activator β-catenin binding to lymphoid enhancer factor (LEF)/T-cell factor protein (TCF). To provide a convenient system for the screening of anti-Wnt/β-catenin agents, we designed a bi-functional pGL4-TOP reporter plasmid that contained 3X β-catenin/LEF/TCF binding sites and a selectable marker. After transfection and hygromycin B selection, HEK 293-TOP and Jurkat-TOP stable clones were established. The luciferase activity in the stable clone was enhanced by the recombinant Wnt-3A (rWnt-3A; 100-400 ng/mL) and GSK3β inhibitor (2’Z,3’E)-6-bromoindirubin-3’-oxime (BIO; 5 µM) but was inhibited by aspirin (5 mM). Using this reporter model, we found that norcantharidin (NCTD; 100 µM) reduced 80% of rWnt-3A-induced luciferase activity. Furthermore, 50 µM NCTD inhibited 38% of BIO-induced luciferase activity in Jurkat-TOP stable cells. Employing ³H-thymidine uptake assay and Western blot analysis, we confirmed that NCTD (50 µM) significantly inhibited proliferation of Jurkat cells by 64%, which are the dominant β-catenin signaling cells and decreased β-catenin protein in a concentration-dependent manner. Thus, we established a stable HEK 293-TOP clone and successfully used it to identify the Wnt/β-catenin signaling inhibitor NCTD.