57 resultados para ANHYDROUS TETRABUTYLAMMONIUM FLUORIDE
Resumo:
Pyrohydrolysis is proposed for fossil fuels sample preparation for further fluorine and chlorine determination. Samples were heated during 10 min at temperatures up to 1000 °C. Water vapor was passed through the reactor and the volatile products were condensed and collected in NH4OH solution. Fluoride was determined by potentiometry using an ion selective electrode (ISE) and Cl by ICP OES and DRC-ICP-MS. The results are in good agreement with certified values and the precision is better than 10% (n = 4). Sample preparation by means of pyrohydrolysis is relatively simple, whereas chlorine and fluorine can be determined at low concentrations.
Resumo:
The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.
Resumo:
Several organic chemistry labs in Brazil suffers from the absence of a safe method to extrude sodium wire, used to obtain anhydrous solvents such as THF or ethyl ether. This technical note presents the assembly instructions for a sodium wire press, similar to the one that has been used for the past four years in our laboratory without any maintenance.
RESSONÂNCIA MAGNÉTICA NUCLEAR DE SUBSTÂNCIAS ORGANOFLUORADAS: UM DESAFIO NO ENSINO DE ESPECTROSCOPIA
Resumo:
Nuclear magnetic resonance is a technique that is widely used for elucidating and characterizing organic substances. Organofluorine substances have applications in many areas from drugs to liquid crystals, but their NMR spectra are often challenging due to fluoride coupling with other nuclei. For this reason, NMR spectra of this class of substances are not commonly covered in undergraduate and graduate chemistry courses and related fields. Thus, the aim of this work was the presentation and discussion of 1H, 13C, and 19F NMR spectra of eleven organofluorine substances which, in the case of 1H and 13C nuclei, showed classic patterns of first-order coupling and the effects of the fluorine nucleus in different chemical and magnetic environments. In addition, the observation of long distance coupling constants was possible through the use of apodization functions in the processing of the spectra. It is expected that the examples presented herein can be utilized and discussed in undergraduate and graduate NMR spectroscopy disciplines and thus improve the teaching and future research of organofluorine compounds.
Resumo:
2015 is the Year of Light, according to UNESCO. Chemistry has a close relationship with light and one of the materials that allows such synergy is glass. Depending on the chemical composition of the glass, it is possible to achieve technological applications for the whole range of wavelengths extending from the region of the microwave to gamma rays. This diversity of applications opens a large range of research where chemistry, as a central science, overlaps the fields of physics, engineering, medicine, etc., generating a huge amount of knowledge and technological products used for humanity. This review article aimed at discussing some families of glasses, illustrating some applications. Due to the extension of the theme, and all points raised, we thought it would be good to divide the article into two parts. In the first part we focus on the properties of heavy metal oxide glasses, fluoride glasses and chalcogenide glasses. In the second part we emphasize the properties of glassy thin films prepared by sol-gel methodology and some applications, of both glasses as the films in photonics, and more attention was given to the nonlinear properties and uses of photonic fibers.
Resumo:
Al(C9H6ON)3.2.5H2O was precipitated from the mixture of an aqueous solution of aluminium ion and an acid solution of 8-hydroxyquinoline, by increasing the pH value to 9.5 with ammonia aqueous solution. The TG curves in nitrogen atmosphere present mass losses due to dehydration, partial volatilisation (sublimation plus vaporisation) of the anhydrous compound followed by thermal decomposition with the formation of a mixture of carbonaceous and residues. The relation between sublimation and vaporisation depends on the heating rate used. The non isothermic integral isoconventional methods as linear equations of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose (KAS) were used to obtain the kinetic parameters from TG and DTA curves, respectively. Despite the fact that both dehydration and volatilisation reactions follow the linearity by using both methods, only for the volatilisation reaction the validity condition, 20<= E/RT<= 50, was verified.
Resumo:
Herbicides such as trifluralin, simazine, atrazine, metribuzin and metolachlor are used in Brazilian agriculture. The efficiency of a small scale method for determination of these herbicides and two degradation products (deisopropylatrazine and deethylatrazine) in soil samples was evaluated. The compounds were extracted from soil samples (5 g) with 20 ml of ethyl acetate in a mechanical shaker for 50 min. Following the extraction, the supernatant was dried through anhydrous sodium sulphate, concentrated and analysed by high resolution gas chromatography (HRGC) with thermionic specific detection (TSD). Mean recoveries obtained from soil samples fortified at three different levels ranged from 81 to 115% with relative standard deviation (RSD) values varying from 1.2 to 12.7%. The method detection limits ranged from 0.01 to 0.06 mg kg-1. The methodology was applied using soil samples from farms located near the town of Araraquara, in the State of São Paulo, Brazil.
Resumo:
The complexes of 2,6-dimethoxybenzoic acid anion with ions of Co(II), Ni(II), and Cu(II) have been synthesized as polycrystalline solids, and characterized by elemental analysis, spectroscopy, magnetic studies, and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have following colours: pink for Co(II), green for Ni(II), and blue for Cu(II) compounds. The carboxylate group binds as monodentate, and bidentate bridging and chelating ligands. On heating in air to 1173 K the complexes decompose in four, three or two steps. At first, they dehydrate in one or two steps to anhydrous salts, that next decompose to oxides of the respective metals. The solubility of the investigated dimethoxybenzoates in water at 293 K is of the order of 10-2 mol/dm3. Their magnetic moments were determined in the temperature range of 76-303 K. The results reveal the compounds of Co(II) and Ni(II) to be high-spin complexes and that of Cu(II) to form dimer.
Resumo:
Physico-chemical properties of 3-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II) were synthesized and studied. The complexes were obtained as mono- and dihydrates with a metal ion to ligand ratio of 1 : 2. All analysed 3-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II) and blue for Cu(II) complexes. Their thermal decomposition was studied in the range of 293 523 K, because it was found that on heating in air above 523 K 3-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10-4 10-2 mol / dm³. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 3-chloro-2-nitrobenzoates experimentally determined at 76 303 K change from 3.67µB to 4.61µB for Co(II) complex, from 2.15µB to 2.87µB for Ni(II) 3-chloro-2-nitrobenzoate and from 0.26µB to 1.39µB for Cu(II) complex. 3-Chloro-2-nitrobenzoates of Co(II) and Ni(II) follow the Curie-Weiss law. Complex of Cu(II) forms dimer.
Resumo:
Physico-chemical properties of 3,4-dimethoxybenzoates of Co(II), Cu(II), La(III) and Nd(III) were studied. The complexes were obtained as hydrated or anhydrous polycrystalline solids with a metal ion-ligand mole ratio of 1 : 2 for divalent ions and of 1 : 3 in the case of trivalent cations. Their colours depend on the kind of central ion: pink for Co(II) complex, blue for Cu(II), white for La(III) and violet for Nd(III) complexes. The carboxylate groups in these compounds are monodentate, bidentate bridging or chelating and tridentate ligands. Their thermal decomposition was studied in the range of 293-1173 K. Hydrated complexes lose crystallization water molecules in one step and form anhydrous compounds, that next decompose to the oxides of respective metals. 3,4 - Dimethoxybenzoates of Co(II) is directly decomposed to the appropriate oxide and that of Nd(III) is also ultimately decomposed to its oxide but with the intemediate formation of Nd2O2CO3.. The magnetic moment values of 3,4-dimethoxybenzoates determined in the range of 76-303 K change from 4.22 µB to 4.61 µB for Co(II) complex , from 0.49 µB to 1.17 µB for Cu(II) complex , and from 2.69 µB to 3.15 µB for Nd(III) complex.
Resumo:
The complexes of 4-chlorophenoxyacetates of Mn(II), Co(II), Ni(II) and Cu(II) have been synthesized as polycrystalline solids, and characterized by elemental analysis, spectroscopy, magnetic studies and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have the following colours: pink for Co(II), green for Ni(II), blue for Cu(II) and a pale pink for Mn(II) compounds. The carboxylate group binds as monodentate and bidentate ligands. On heating to 1173K in air the complexes decompose in several steps. At first, they dehydrate in one step to anhydrous salts, that next decompose to the oxides of respective metals. Their magnetic moments were determined in the range of 76-303K. The results reveal them to be high-spin complexes of weak ligand fields.
Resumo:
The physicochemical properties of 2,4-, and 3,4- dimethoxybenzoates of Cu(II), Co(II) and Nd(III) were studied and compared to observe the -OCH3 substituent positions in benzene ring on the character of complexes. The analysed compounds are crystalline hydrated or anhydrous salts with colours depending on the kind of central ions: blue for Cu(II), pink for Co(II) and violet for Nd(III) complexes. The carboxylate groups bind as monodentate, bidentate bridging or chelating and even tridentate ligands. Their thermal stabilities were studied in air at 293-1173K. When heated the hydrated complexes release the water molecules and form anhydrous compounds which are then decomposed to the oxides of respective metals. Their magnetic moment values were determined in the range of 76-303K. The results reveal the compounds of Nd(III) and Co(II) to be the high-spin and that of Cu(II) forms dimer. The various positions of -OCH3 groups in benzene ring influence some of physicochemical properties of analysed compounds.
Resumo:
The complexes of silver(I) with 2,3-, 2,4-, 2,6-, 3,4-, 3,5-dimethoxy-, and 2,3,4- and 3,4,5-trimethoxybenzoic acid anions have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric and X-ray studies. Their solubility in water has been also determined at 293K. All analysed complexes were found to be crystalline, anhydrous compounds with low symmetry. The carboxylate groups act as bidentate or monodentate ligands. The thermal stability of compounds has been examined in air in temperature range of 293-1173K. The analysed complexes were found to be stable at room temperature and their solubilities in water at 293K to be in the order of 10-4 mol.dm-3.
Resumo:
The complexes of 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III) have been synthesized as polycrystalline hydrated solids, and characterized by elemental analysis, spectroscopy, magnetic studies and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have the following colours: violet for Nd(III), white for Gd(III) and cream for Ho(III) compounds. The carboxylate groups bind as bidentate chelating (Ho) or bridging ligands (Nd, Gd). On heating to 1173K in air the complexes decompose in several steps. At first, they dehydrate in one step to form anhydrous salts, that next decompose to the oxides of respective metals. The gaseous products of their thermal decomposition in nitrogen were also determined and the magnetic susceptibilites were measured over the temperature range of 76-303K and the magnetic moments were calculated. The results show that 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III) are high-spin complexes with weak ligand fields. The solubility value in water at 293K for analysed 4-chlorophenoxyacetates is in the order of 10-4mol/dm³.
Resumo:
Four simple titrimetric procedures are described for the determination of lisinopril (LNP) in bulk and in pharmaceuticals based on the neutralization of basic-amino and acidic carboxylic acid groups present in LNP. Method A is based on the neutralization of basic amino groups using perchloric acid as titrant in anhydrous acetic acid medium. Method B, method C and method D are based on neutralization of carboxylic acid group using NaOH, sodium methoxide and methanolic KOH, as titrants, respectively. Method A is applicable over 2.0-20.0 mg range and the calculations are based in the molar ratio of 1:2 (LNP:HClO4). Method B, method C and method D are applicable over 2.0-20.0 mg, 1.0-10.0 mg and 5.0-15.0 mg range, respectively, and their respective molar ratios are 1:1 (LNP:NaOH), 1:2 (LNP:CH3ONa) and 1:1 (LNP:KOH). Intraday and inter day accuracy and precision of the methods were evaluated and the results showed intra- and inter-day precision less than 2.7% (RSD), and accuracy of < 2.5 % (RE). The developed methods were applied to determine LNP in tablets and the results were validated statistically by comparing the results with those of the reference method by applying the Student's t-test and F-test. The accuracy was further ascertained by recovery studies via standard addition technique. No interferences from common tablet exipients was observed.