61 resultados para AND replication
Resumo:
The synthetic n-alkyl esters of gallic acid (GA), also known as gallates, especially propyl, octyl and dodecyl gallates, are widely employed as antioxidants by food and pharmaceutical industries. The inhibitory effects of GA and 15 gallates on Herpes Simplex Virus type 1 (HSV-1) and Human Immunodeficiency Virus (HIV-1) replication were investigated here. After a preliminary screening of these compounds, GA and pentyl gallate (PG) seemed to be the most active compounds against HSV-1 replication and their mode of action was characterized through a set of assays, which attempted to localize the step of the viral multiplication cycle where impairment occurred. The detected anti-HSV-1 activity was mediated by the inhibition of virus attachment to and penetration into cells, and by virucidal properties. Furthermore, an anti-HIV-1 activity was also found, to different degrees. In summary, our results suggest that both compounds could be regarded as promising candidates for the development of topical anti-HSV-1 agents, and further studies concerning the anti-HIV-1 activity of this group of molecules are merited.
Resumo:
Monocytes/macrophages are important targets for dengue virus (DENV) replication; they induce inflammatory mediators and are sources of viral dissemination in the initial phase of the disease. Apoptosis is an active process of cellular destruction genetically regulated, in which a complex enzymatic pathway is activated and may be trigged by many viral infections. Since the mechanisms of apoptotic induction in DENV-infected target cells are not yet defined, we investigated the virus-cell interaction using a model of primary human monocyte infection with DENV-2 with the aim of identifying apoptotic markers. Cultures analyzed by flow cytometry and confocal microscopy yielded DENV antigen positive cells with rates that peaked at the second day post infection (p.i.), decayed afterwards and produced the apoptosis-related cytokines TNF-α and IL-10. Phosphatidylserine, an early marker for apoptosis, was increased at the cell surface and the Fas death receptor was upregulated at the second day p.i. at significantly higher rates in DENV infected cell cultures than controls. However, no detectable changes were observed in the expression of the anti-apoptotic protein Bcl-2 in infected cultures. Our data support virus modulation of extrinsic apoptotic factors in the in vitro model of human monocyte DENV-2 infection. DENV may be interfering in activation and death mechanisms by inducing apoptosis in target cells.
Resumo:
The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37ºC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 μg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 μg/mL and between 1.9-33.7 μg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.
Resumo:
Mycobacterium fortuitum is a rapidly growing nontuberculous Mycobacterium that can cause a range of diseases in humans. Complications from M. fortuitum infection have been associated with numerous surgical procedures. A protective immune response against pathogenic mycobacterial infections is dependent on the granuloma formation. Within the granuloma, the macrophage effector response can inhibit bacterial replication and mediate the intracellular killing of bacteria. The granulomatous responses of BALB/c mice to rapidly and slowly growing mycobacteria were assessed in vivo and the bacterial loads in spleens and livers from M. fortuitum and Mycobacterium intracellulare-infected mice, as well as the number and size of granulomas in liver sections, were quantified. Bacterial loads were found to be approximately two times lower in M. fortuitum-infected mice than in M. intracellulare-infected mice and M. fortuitum-infected mice presented fewer granulomas compared to M. intracellulare-infected mice. These granulomas were characterized by the presence of Mac-1+ and CD4+ cells. Additionally, IFN-γmRNA expression was higher in the livers of M. fortuitum-infected mice than in those of M. intracellulare-infected mice. These data clearly show that mice are more capable of controlling an infection with M. fortuitum than M. intracellulare. This capacity is likely related to distinct granuloma formations in mice infected with M. fortuitum but not with M. intracellulare.
Resumo:
This study evaluated two vaccine candidates for their effectiveness in protecting BALB/c mice against Leishmania chagasiinfection. These immunogenic preparations were composed of Leishmania amazonensisor Leishmania braziliensisantigenic extracts in association with saponin adjuvant. Mice were given three subcutaneous doses of one of these vaccine candidates weekly for three weeks and four weeks later challenged with promastigotes of L. chagasiby intravenous injection. We observed that both vaccine candidates induced a significant reduction in the parasite load of the liver, while the L. amazonensisantigenic extract also stimulated a reduction in spleen parasite load. This protection was associated with a suppression of both interleukin (IL)-10 and IL-4 cytokines by spleen cells in response to L. chagasiantigen. No change was detected in the production of IFN-γ. Our data show that these immunogenic preparations reduce the type 2 immune response leading to the control of parasite replication.
Resumo:
Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.
Resumo:
This study was designed to assess the effect of GB virus (GBV)-C on the immune response to human immunodeficiency virus (HIV) in chronically HIV-infected and HIV- hepatitis C virus (HCV)-co-infected patients undergoing antiretroviral therapy. A cohort of 159 HIV-seropositive patients, of whom 52 were HCV-co-infected, was included. Epidemiological data were collected and virological and immunological markers, including the production of interferon gamma (IFN-γ) and interleukin (IL)-2 by CD4, CD8 and Tγδ cells and the expression of the activation marker, CD38, were assessed. A total of 65 patients (40.8%) presented markers of GBV-C infection. The presence of GBV-C did not influence HIV and HCV replication or TCD4 and TCD8 cell counts. Immune responses, defined by IFN-γ and IL-2 production and CD38 expression did not differ among the groups. Our results suggest that neither GBV-C viremia nor the presence of E2 antibodies influence HIV and HCV viral replication or CD4 T cell counts in chronically infected patients. Furthermore, GBV-C did not influence cytokine production or CD38-driven immune activation among these patients. Although our results do not exclude a protective effect of GBV-C in early HIV disease, they demonstrate that this effect may not be present in chronically infected patients, who represent the majority of patients in outpatient clinics.
Resumo:
The retrovirus human T lymphotropic virus type 1 (HTLV-1) promotes spastic paraparesis, adult T cell leukaemia and other diseases. Recently, some human microRNAs (miRNAs) have been described as important factors in host-virus interactions. This study compared miRNA expression in control individuals, asymptomatic HTLV-1 carriers and HTLV-1 associated myelopathy (HAM)/tropical spastic paraparesis patients. The proviral load and Tax protein expression were measured in order to characterize the patients. hsa-miR-125b expression was significantly higher in patients than in controls (p = 0.0285) or in the HAM group (p = 0.0312). Therefore, our findings suggest that miR-125b expression can be used to elucidate the mechanisms of viral replication and pathogenic processes.
Resumo:
Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV) molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.
Resumo:
Tests for bioaccessibility are useful in human health risk assessment. No research data with the objective of determining bioaccessible arsenic (As) in areas affected by gold mining and smelting activities have been published so far in Brazil. Samples were collected from four areas: a private natural land reserve of Cerrado; mine tailings; overburden; and refuse from gold smelting of a mining company in Paracatu, Minas Gerais. The total, bioaccessible and Mehlich-1-extractable As levels were determined. Based on the reproducibility and the accuracy/precision of the in vitro gastrointestinal (IVG) determination method of bioaccessible As in the reference material NIST 2710, it was concluded that this procedure is adequate to determine bioaccessible As in soil and tailing samples from gold mining areas in Brazil. All samples from the studied mining area contained low percentages of bioaccessible As.
Resumo:
Baculoviruses are insect viruses found mainly in Lepidoptera. The family Baculoviridae is taxonomically divided in two genera, Nucleopolyhedrovirus and Granulovirus, which differ by occlusion body morphology. NPVs (Nucleopolyhedroviruses) have polyhedrical inclusion bodies (PIBs) containing multiple viral particles, while GVs (Granuloviruses) appear to be generally single particles occluded in oval shaped occlusion bodies. During the life cycle, two different viral progenies are produced: BV (Budded Virus) and PDV (Polyhedra Derived Virus), which are essential for the infectious process and virus propagation in host cells. Baculoviruses are being used for pest control and they are especially safe due to their specificity and invertebrate-restricted host range. Baculoviruses have been used as vectors for high level protein expression ofheterologous genes from prokaryotic and eukaryotic organisms. Also, recombinant DNA techniques have allowed the production of genetically modified viral insecticides. This study is a review on the taxonomy, structure, replication and molecular biology of baculoviruses, as well as their use as bioinsecticides in Brazil.
Resumo:
Cole latent virus (CoLV), genus Carlavirus, was studied by electron microscopy and biochemical approaches with respect both to the ultrastructure of the Chenopodium quinoa infected cells and to its association with chloroplasts. The CoLV was observed to be present as scattered particles interspersed with membranous vesicles and ribosomes or as dense masses of virus particles. These virus particles reacted by immunolabelling with a polyclonal antibody to CoLV. Morphologically, chloroplasts, mitochondria and nuclei appeared to be unaltered by virus infection and virus particles were not detected in these organelles. However, virus particle aggregates were frequently associated with the outer membrane of chloroplasts and occasionally with peroxisomes. Chloroplasts were purified by Percoll gradient, and the coat protein and virus-associated RNAs were extracted and analyzed by Western and Northern blots respectively. Coat protein and CoLV-associated RNAs were not detected within this organelle. The results presented in this work indicate that the association CoLV/chloroplasts, observed in the ultrastructural studies, might be a casual event in the host cell, and that the virus does not replicate inside the organelle.
Resumo:
Infection by Sugarcane yellow leaf virus (ScYLV) causes severe leaf symptoms in sugarcane (Saccharum spp.) hybrids, which indicate alterations in its photosynthetic apparatus. To gain an overview of the physiological status of infected plants, we evaluated chlorophyll a fluorescence and gas exchange assays, correlating the results with leaf metabolic surveys, i.e., photosynthetic pigments and carbohydrate contents. When compared to healthy plants, infected plants showed a reduction in potential quantum efficiency for photochemistry of photosystem (PSII) and alterations in the filling up of the plastoquinone (PQ) pool. They also showed reduction in the CO2 net exchange rates, probably as a consequence of impaired quantum yield. In addition, reductions were found in the contents of photosynthetic leaf pigments and in the ratio chlorophyll a/chlorophyll b (chla/chlb). Carbohydrate content in the leaves was increased as a secondary effect of the ScYLV infection. This article discusses the relation of virus replication and host defense responses with general alterations in the photosynthetic apparatus and in the metabolism of infected plants.
Resumo:
Viroids, non-protein-coding small (246-401 nt) circular single-stranded RNAs with autonomous replication, are currently classified into two families. Within the family Pospiviroidae, Citrus exocortis viroid (CEVd) belongs to the genus Pospiviroid while Hop stunt viroid (HSVd) is the single member of the genus Hostuviroid. These pathogens are distributed worldwide and infect a large number of hosts. In Brazil, isolates of CEVd and HSVd have been detected in both citrus and grapevine. To characterize and study the genetic variability of these viroids, total RNA from leaves of grapevine Vitis vinifera 'Cabernet Sauvignon' and V. labrusca 'Niagara Rosada' from Bento Gonçalves, RS, was used as a template for RT-PCR amplification with specific primers for the five viroids described infecting grapevines [HSVd, CEVd, Grapevine yellow speckle viroid 1 (GYSVd-1), Grapevine yellow speckle viroid 2 (GYSVd-2) and Australian grapevine viroid (AGVd)]. Leaf samples of Citrus medica infected with CEVd from São Paulo were also analyzed. The resulting products were separated by agarose gel electrophoresis and DNA fragments of the expected size were eluted, cloned and sequenced. The grapevine samples analyzed were doubly infected by CEVd and HSVd. A phylogenetic analysis showed that the Brazilian grapevine HSVd variants clustered with other grapevine HSVd variants, forming a specific group separated from citrus variants, whereas the Brazilian CEVd variants clustered with other citrus and grapevine variants.
Resumo:
This study with beetroot seedlings, cultivar Top Tall Early Wonder, was carried out at the State University of Mato Grosso do Sul (UEMS/Aquidauana), from October to November 2008. Three environments of cultivation were used: greenhouse; nursery with monofilament screen of 50 % of shading; and nursery with aluminized thermal reflective screen of 50% of shading. In these environments, three polystyrene trays of 72, 128 and 200 cells, filled with four substrates, were tested: soil; Plantmax®; coconut fiber and vermiculite. There were no replication environments and then each one was considered an experiment alone. For each environment, it was adopted a completely randomized design in factorial scheme 3x4 (three trays x four substrates), with four replications, performing individual analysis of variance and joint analysis of experiments for environment comparisons. The monofilament screen is the best environment for seedlings produced in tray of 72 cells, and the greenhouse was the best environment for seedlings produced in trays of 128 cells. The best seedlings were formed in the tray of 72 cells. Vermiculite was the best substrate.