92 resultados para AIRWAY MUCUS
Resumo:
The A. described on December 14, 1951, his first culture of acid-fast bacillus isolated from nasal mucus of a leprous girl. in this paper the A. describes two new strains of acid-fast bacilli gotten also from nasal mucus of other two leprous girls, L3 cases. The first patient (layse S) had her mucus treated by petroff's method on December 16, 1952 and sown onto three tubes of loewenstein medium and in glycerin broth. After two weeks incubation at 37°C all three tubes of Loewenstein showed many punctiforme and pin-head yellowish colonies, whose microscopic examination proved to be of a pure acid-fast bacillus culture. This sample inoculated in rats and mice produced, after 55 days incubation, small tumors from which the culture was easily recovered. On April, 9, 1953 a new sample of nasal mucus of the same patient was sown in three tubes of Loewenstein. After two weeks incubation at 37°C all 3 tubes showed germination of small yellowish colonies of acid-fast bacilli. Within four months being gotten two samples of identical cultures in all smeared tubes of Loewenstein medium sown, proved that such cultures were not an ordinary ambient contamination. Second patient: - Maria N. After various sowing of different kinds of material from her, february 26, 1953 her nasal mucus treated by soda and sown onto Loewenstein medium, after 25 days incubation showed in only one tube, one small round colony, at first white, becoming creamy after three months. Transplants in various media grew at first slowly and after 2 or 3 generations grew faster. The "Layse" strain produced pellicle in glycerin broth and Dubos medium; the "Maria N." strain did not produce as yet. Both strains (Layse I and II, and Maria N.) gave weak positive Dubos test in half-an-hour and negative after 24 hours reading. Both were strongly positive when stained by Gram, Ziehl-Neelsen and Fontes methods. Both strains gave also positive fluoroscopy. These cultures are being studied. The A. concludes that, according to his experience, the slower growing cultures of acid-fast bacilli isolated from leprosy material, are the more suitable for experimental work. Aknowledgement. The A. thanks to Miss MARIA DE LOURDES SANTANA for her valuable collaboration in the studies of the described cultures.
Resumo:
Two techniques for rapid diagnosis, immunofluorescence (IFAT) and enzyme immunoassay (EIA), have been compared with virus isolaion in tissue culture for the detection of respiratory syncytial virus (RSV) in specimens of nasopharyngeal secretions. The specimens were obtained from children under five years of age suffering from acute respiratory iliness, during a period of six months from January to June 1982. Of 471 specimens examined 54 (11.5%) were positive by virus isolation and 180 (38.2%) were positive by immunofluorescence. The bacterial contamination of inoculated tissue cultures unfortunately prevented the isolation of virus from many samples. Specimens from 216 children were tested to compare enzyme immunoassay and immunofluorescence. Of these 60 (27%) were positive by EIA and 121 (56%) were positive by IFAT. Our results suggest that the EIA technique although highly specific is rather insensitive. This may be because by the time these tests were done the originl nasopharyngeal secretions were considerably diluted and contained more mucus fragments than the call suspension used for IFAT. Of the three techniques, IFAT gives the best results although EIA may be useful where IFAT is not possible.
Resumo:
Interleukin 5 (IL-5) is a critical cytokine for the maturation of eosinophil precursors to eosinophils in the bone marrow and those eosinophils then accumulate in the lungs during asthma. We have studied anti IL-5 antibodies on allergic responses in mice, guinea pigs and monkeys and are extending this experiment into humans with a humanized antibody. In a monkey model of pulmonary inflammation and airway hyperreactivity, we found that the TRFK-5 antibody blocked both responses for three months following a single dose of 0.3 mg/kg, i.v. This antibody also blocked lung eosinophilia in mice by inhibiting release from the bone marrow. To facilitate multiple dosing and to reduce immunogenicity in humans, we prepared Sch 55700, a humanized antibody against IL-5. Sch 55700 was also active against lung eosinophilia in allergic monkeys and mice and against pulmonary eosinophilia and airway hyperresponsiveness in guinea pigs. Furthermore, as opposed to steroids, Sch 55700 did not cause immunosuppression in guinea pigs. Studies with this antibody in humans will be critical to establishing the therapeutic potential of IL-5 inhibition.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
Mycobacteria, specially Mycobacterium tuberculosis are among the micro-organisms that are increasing dramatically the number of infections with death, all over the world. A great number of animal experimental models have been proposed to investigate the mechanisms involved in the host response against these intracellular parasites. Studies of airway infection in guinea-pigs and rabbits, as well as, in mice intravenously infected with BCG have made an important contribution to our understanding of the virulence, pathogenesis and the immunology of mycobacterial infections. Although, there are few models to study the mechanisms of the initial inflammatory process induced by the first contact with the Mycobacteria, and the relevance of the acute generation of inflammatory mediators, cytokines and leukocyte infiltration to the development of the mycobacterial infection. In this work we reviewed our results obtained with a model of M. bovis BCG-induced pleurisy in mice, describing the mechanisms involved in the leukocyte influx induced by BCG at 24 hr. Different mechanisms appear to be related with the influx of neutrophils, eosinophils and mononuclear cells and distinct inflammatory mediators, cytokines and adhesion molecules are involved in the BCG-induced cell accumulation.
Resumo:
Asthma results from allergen-driven intrapulmonary Th2 response, and is characterized by intermittent airway obstruction, airway hyperreactivity (AHR), and airway inflammation. Accumulating evidence indicates that inflammatory diseases of the respiratory tract are commonly associated with elevated production of nitric oxide (NO). It has been shown that exhaled NO may be derived from constitutive NO synthase (NOS) such as endothelial (NOS 3) and neural (NOS 1) in normal airways, while increased levels of NO in asthma appear to be derived from inducible NOS2 expressed in the inflamed airways. Nevertheless, the functional role of NO and NOS isoforms in the regulation of AHR and airway inflammation in human or experimental models of asthma is still highly controversial. In the present commentary we will discuss the role of lipopolysaccharides contamination of allergens as key element in the controversy related to the regulation of NOS2 activity in experimental asthma.
Resumo:
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.
Resumo:
It is presumed that drugs able to prevent bronchial spasm and/or inflammation may have therapeutic potential to control asthma symptoms. The local anaesthetic lidocaine has recently received increased attention as an alternative form of treatment for asthmatic patients. This paper reviews the major findings on the topic and summarizes the putative mechanisms underlying the airway effects of local anaesthetic agents. We think that lidocaine extends the spectrum of options in asthma therapy, probably by counteracting both spasmogenic and inflammatory stimuli in the bronchial airways. The possibility of development of new anti-asthma compounds based on the synthesis of lidocaine derivatives is also on the horizon.
Resumo:
As many metalloproteinases (MMPs), macrophage elastase (MMP-12) is able to degrade extracellular matrix components such as elastin and is involved in tissue remodeling processes. Studies using animal models of acute and chronic pulmonary inflammatory diseases, such as pulmonary fibrosis and chronic obstrutive pulmonary disease (COPD), have given evidences that MMP-12 is an important mediator of the pathogenesis of these diseases. However, as very few data regarding the direct involvement of MMP-12 in inflammatory process in the airways were available, we have instilled a recombinant form of human MMP-12 (rhMMP-12) in mouse airways. Hence, we have demonstrated that this instillation induced a severe inflammatory cell recruitment characterized by an early accumulation of neutrophils correlated with an increase in proinflammatory cytokines and in gelatinases and then by a relatively stable recruitment of macrophages in the lungs over a period of ten days. Another recent study suggests that resident alveolar macrophages and recruited neutrophils are not involved in the delayed macrophage recruitment. However, epithelial cells could be one of the main targets of rhMMP-12 in our model. We have also reported that a corticoid, dexamethasone, phosphodiesterase 4 inhibitor, rolipram and a non-selective MMP inhibitor, marimastat could reverse some of these inflammatory events. These data indicate that our rhMMP-12 model could mimic some of the inflammatory features observed in COPD patients and could be used for the pharmacological evaluation of new anti-inflammatory treatment. In this review, data demonstrating the involvement of MMP-12 in the pathogenesis of pulmonary fibrosis and COPD as well as our data showing a pro-inflammatory role for MMP-12 in mouse airways will be summarized.
Resumo:
Helicobacter pylori infection is one of the most common infections worldwide and is associated with gastric diseases. Virulence factors such as VacA and CagA have been shown to increase the risk of these diseases. Studies have suggested a causal role of CagA EPIYA-C in gastric carcinogenesis and this factor has been shown to be geographically diverse. We investigated the number of CagA EPIYA motifs and the vacA i genotypes in H. pylori strains from asymptomatic children. We included samples from 40 infected children (18 females and 22 males), extracted DNA directly from the gastric mucus/juice (obtained using the string procedure) and analysed the DNA using polymerase chain reaction and DNA sequencing. The vacA i1 genotype was present in 30 (75%) samples, the i2 allele was present in nine (22.5%) samples and both alleles were present in one (2.5%) sample. The cagA-positive samples showed distinct patterns in the 3’ variable region of cagA and 18 of the 30 (60%) strains contained 1 EPIYA-C motif, whereas 12 (40%) strains contained two EPIYA-C motifs. We confirmed that the studied population was colonised early by the most virulent H. pylori strains, as demonstrated by the high frequency of the vacA i1 allele and the high number of EPIYA-C motifs. Therefore, asymptomatic children from an urban community in Fortaleza in northeastern Brazil are frequently colonised with the most virulent H. pylori strains.
Resumo:
Mucoceles are cystic masses that generally affect the sinuses. It occurs as a result from obstruction of the ostium of a sinus and consequential accumulation of mucus. Frontal and ethmoid sinuses are mostly affected. Usually, the clinical symptoms are insidious, varying with the extent of the affected region. The treatment is surgical and endoscopic surgery is the method of choice in most cases. The present study is aimed at describing the main characteristics of paranasal sinuses mucoceles, demonstrating and illustrating a series of atypical presentations with emphasis on imaging findings.
Resumo:
Schwannoma is a rare benign tumor of the proximal tracheobronchial tree. The aim of the present study is to report a case of tracheal schwannoma causing airway obstruction. A 16-year-old woman complained of cough, wheezing and dyspneia. Bronchoscopy and computerized tomography showed a polypoide intratracheal mass obstructing approximately 80% of the lumen. The treatment consisted of tracheal resection and primary anastomosis. Histological analysis revealed a tracheal schwannoma. The postoperative course was uneventful and the patient remains well twelve months after surgery.
Resumo:
Objective: To correlate anatomical and functional changes of the oral cavity, pharynx and larynx to the severity of obstructive sleep apnea syndrome (OSAS). Methods : We conducted a cross-sectional study of 66 patients of both genders, aged between 21 and 59 years old with complaints of snoring and / or apnea. All underwent full clinical evaluation, including physical examination, nasolarybgoscopy and polisonography. We classified individuals into groups by the value of the apnea-hypopnea index (AHI), calculated measures of association and analyzed differences by the Kruskal-Wallis and chi-square tests. Results : all patients with obesity type 2 had OSAS. We found a relationship between the uvula projection during nasoendoscopy and OSAS (OR: 4.9; p-value: 0.008; CI: 1.25-22.9). In addition, there was a major strength of association between the circular shape of the pharynx and the presence of moderate or severe OSAS (OR: 9.4, p-value: 0.002), although the CI was wide (1.80-53.13). The septal deviation and lower turbinate hypertrophy were the most frequent nasal alterations, however unrelated to gravity. Nasal obstruction was four times more common in patients without daytime sleepiness. The other craniofacial anatomical changes were not predictors for the occurrence of OSAS. Conclusion : oral, pharyngeal and laryngeal disorders participate in the pathophysiology of OSAS. The completion of the endoscopic examination is of great value to the evaluation of these patients.
Resumo:
The interest to develop research on the host-parasite relationship in bovine tritrichomonosis has accomplished the use of experimental models alternative to cattle. The BALB/c mouse became the most appropriate species susceptible to vaginal Tritrichomonas foetus infection requiring previous estrogenization. For the need of an experimental model without persistent estrogenization and with normal estrous cycles, the establishment and persistence of vaginal infection on BALB/c mouse with different concentrations of T. foetus in two experimental groups was evaluated. Group A was treated with 5mg of b-estradiol 3-benzoate to synchronize the estrous, 48 hours before the T. foetus vaginal inoculation, and Group B was inoculated in natural estrus. At 5-7 days after treatment, estrogenic effect decreased allowing all animals to cycle regularly during the experiment. From the first week post-infection, samples of vaginal mucus were taken from all animals during 34 weeks, in order to evaluate the course of infection and the stage of the estrus cycle. Group A showed 93.6% of infected animals, and Group B showed 38%. Different doses of T. foetus were assayed to establish the vaginal infection, with a persistence of 34 weeks. Although different behavior was observed in each subgroup belonging to either Group A or Group B, there were no significant differences among the infecting doses used. The b-estradiol 3-benzoate treatment had a favorable effect on the establishment of the infection (P<0.0001), but it did not influence its persistence (P=0.1097). According to the results, an experimental mouse model is presented, appropriate for further studies on mechanisms of pathogenicity, immune response, protective evaluation of immunogen and therapeutic effect of drugs.