445 resultados para Sandy soil
Resumo:
The objective of this work was to determine the effects of seed priming and sulfur application on cell membrane characteristics, seedling emergence, chlorophyll content and grain yield of soybean (Glycine max) in saline soil. A complete-block design in 4x3 factorial arrangement with three replicates was used to test four types of seed priming (water, auxin, gibberellin and non-priming) and three levels of sulfate availability (0, 70 and 140 kg ha-1 K2SO4). The soil had a silty loam texture with an electrical conductivity of 3.61 ds m-1, a pH of 8.2 and a saturation percentage of about 46%. Seed priming had significant effects on mean emergence rate (MER), emergence percentage, relative water content (RWC) of leaves, relative chlorophyll content, time of maturity, shoot length and grain yield. The highest values for these variables were observed in the priming treatments, except for the time of maturity. Sulfur application had significant effects on MER, shoot length, RWC, membrane injury index and grain yield. Priming treatments provide greater emergence rates and grain yields and interact sinergicaly with sulfur rates.
Resumo:
The objective of this work was to evaluate the effect of grafting (onto Solanum torvum Sw.) on plant growth, yield and fruit quality of the Pala and Faselis eggplant (Solanum melongena L.) cultivars, grown in a soil infested with Verticillium dahliae Kleb. and Meloidogyne incognita, or in noninfested soil. Soil infestation decreased yield, plant height, final above-ground biomass, and also reduced fruit mean weight and shoot dry weight depending on cultivar or grafting. Grafting decreased fruit oxalic acid and the soluble solid contents, and increased mean fruit weight, depending on cultivar and soil infestation. Grafting also reduced the negative effects of the pathogens on disease index, plant height and shoot dry weight. Cultivar Pala was more vigorous than Faselis, and S. torvum was a vigorous rootstock. The combination of a vigorous rootstock with a weak cultivar (Faselis) is more profitable than that of a vigorous rootstock and a vigorous cultivar (Pala). Using S. torvum as a rootstock for cultivar Faselis, grown in soil infested with the pathogens, is most likely to be useful in conventional and low-input sustainable horticulture, since grafting increases protection against the pathogens, and reduces the losses in quality and yield.
Resumo:
The objective of this work was to assess the effect of successive selection cycles on leaf plasticity of 'Saracura' maize BRS-4154 under periodical flooding in field conditions. Soil flooding started at the six-leaf stage with the application of a 20-cm depth water layer three times a week. At flowering, samples of leaves were collected and fixed. Paradermic and transverse sections were observed under photonic microscope. Several changes were observed throughout the selection cycles, such as modifications in the number and size of the stomata, higher amount of vascular bundles and the resulting decrease of the distance between them, smaller diameter of the metaxylem, decrease of cuticle and epidermis thickness, decrease of number and size of bulliform cells, increase of phloem thickness, smaller sclerenchyma area. Therefore, the successive selection cycles of 'Saracura' maize resulted in changes in the leaf anatomy, which might be favorable to the plant's tolerance to the intermittent flooding of the soil.
Resumo:
The objective of this work was to evaluate the effect of moisture and temperature on the development of Sclerotium rolfsii on soybean, corn, and wheat straw. Wheat straw produced the lowest number of sclerotia. Intermediate soil moisture level (70% of field capacity), and temperatures ranging between 25-30ºC favored sclerotia development. No sclerotia were formed at temperatures between 30-35ºC, on any type of straw.
Resumo:
The objective of this work was to evaluate the change in soil C and N mineralization due to successive pig slurry application under conventional tillage (CT) and no tillage (NT) systems. The experiment was carried out in a clayey Latossolo Vermelho eutrófico (Rhodic Eutrudox) in Palotina, PR, Brazil. Increasing doses of pig slurry (0, 30, 60 and 120 m³ ha-1 per year) were applied in both tillage systems, with three replicates. Half of the pig slurry was applied before summer soil preparation, and the other half before the winter crop season. The areas were cultivated with soybean (Glycine max L.) and maize (Zea mays L.) in the summers of 1998 and 1999, respectively, and with wheat (Triticum sativum Lam.) in the winters of both years. Soil samples were collected at 0-5, 5-10, and 10-20 cm depths. Under both CT and NT systems, pig slurry application increased C and N mineralization. However, increasing pig slurry additions decreased the C to N mineralization ratio. Under the NT system, C and N mineralization was greater than in CT system.
Resumo:
The objective of this work was to determine differences in leaf mineral composition between ungrafted and grafted onto (Solanum torvum) eggplant (Solanum melongena), cultivars 'Faselis' and 'Pala', grown in a soil infested with Verticillium dahliae and Meloidogyne incognita, or in a noninfested soil. Grafting increased leaf P and Mn concentrations, and decreased N concentrations, in both soils. Grafting also enhanced leaf Ca concentration of 'Pala', but it did not affect that of 'Faselis' depending on the cropping year. Leaf Mg concentration of grafted plants in infested soil was lower than that of ungrafted ones in noninfested soil. Results showed that, under the same fertilization program, the grafted 'Faselis' plants used the nutrients more efficiently than the 'Pala' ones. Use of S. torvum as a rootstock for 'Faselis' resulted in an effective protection against multiple pathogen infestation. Fertilization may be necessary when grafted 'Faselis' plants are grown in a soil infested with the pathogens, since grafting and infestation generally decrease leaf N, Mg, Ca and Fe concentrations, either by reducing the nutrient concentrations directly or by increasing leaf Mn concentration.
Resumo:
The objective of this work was to assess the effect of different coffee organic cultivation systems on chemical and biological soil characteristics, in different seasons of the year. The following systems were evaluated: coffee intercropped with one (CJ1), two (CJ2) or three (CJ3) pigeon pea (Cajanus cajan) alleys; coffee planted under full sun (CS); area planted with sweet pepper and snap bean in a conventional tillage system (AC); and secondary forest area (FFR). Row spacing in CJ1, CJ2, CJ3 and CS was 2.0x1.0, 2.8x1.0, 3.6x1.0, and 2.8x1.0 m, respectively. Soil samples were collected at 10-cm depth, during the four seasons of the year. The results were subjected to analysis of variance, principal component analysis, and redundancy analysis. There was an increase in edaphic macrofauna, soil basal respiration, and microbial quotient in the summer. Total macrofauna density was greater in CJ2 followed by CJ3, CS, CJ1, AC and FFR; Coleoptera, Formicidae, and Isoptera were the most abundant groups. There are no significant differences among the areas for soil basal respiration, and the metabolic quotient is higher in CJ1, CJ3, and FFR. Microbial biomass carbon and the contents of K, pH, Ca+Mg, and P show greater values in AC.
Resumo:
The objective of this work was to evaluate the effect of the pasture (Urochloa brizantha) component age on soil biological properties, in a crop-livestock integrated system. The experiment was carried out in a Brazilian savannah (Cerrado) area with 92 ha, divided into six pens of approximately 15 ha. Each pen represented a different stage of the pasture component: formation, P0; one year, P1; two years, P2; three years, P3; and final with 3.5 years, Pf. Samples were taken in the 0-10 cm soil depth. The soil biological parameters - microbial biomass carbon (MBC), microbial biomass respiration (C-CO2), metabolic quotient (qCO2), microbial quotient (q mic), and total organic carbon (TOC) - were evaluated and compared among different stages of the pasture, and between an adjacent area under native Cerrado and another area under degraded pasture (PCD). The MBC, q mic and TOC increased and qCO2 reduced under the different pasture stages. Compared to PCD, the pasture stages had higher MBC, q mic and TOC, and lower qCO2. The crop-livestock integrated system improved soil microbiological parameters and immobilized carbon in the soil in comparison to the degraded pasture.
Resumo:
The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.
Resumo:
The objective of this work was to evaluate the correlation between sugarcane yield and some physical and chemical attributes of soil. For this, a 42‑ha test area in Araras, SP, Brazil, was used. Soil properties were determined from samples collected at the beginning of the 2003/2004 harvest season, using a regular 100x100 m grid. Yield assessment was done with a yield monitor (Simprocana). Correlation analyses were performed between sugarcane yield and the following soil properties: pH, pH CaCl2, N, C, cone index, clay content, soil organic matter, P, K, Ca, Mg, H+AL, cation exchange capacity, and base saturation. Correlation coefficients were respectively ‑0.05, ‑0.29, 0.33, 0.41, ‑0.27, 0.22, 0.44, ‑0.24, trace, ‑0.06, 0.01, 0.32, 0.14, and 0.04. Correlations of chemical and physical attributes of soil with sugarcane yield are weak, and, per se, they are not able to explain sugarcane yield variation, which suggests that other variables, besides soil attributes, should be analysed.
Resumo:
The objective of this work was to verify whether the addition of biochar to the soil affects the degradation of litter and of soil organic matter (SOM). In order to investigate the effect of biochar on the mineralization of barley straw, soil was incubated with 14C-labelled barley straw with or without unlabelled biochar. To investigate the effect of straw on the mineralization of biochar, soil was incubated with 14C-labelled biochar with or without straw. In addition, to investigate the effect of biochar on old SOM, a soil labelled by applying labelled straw 40 years ago was incubated with different levels of biochar. All experiments had a control treatment, without any soil amendment. The effect of biochar on the straw mineralization was small and nonsignificant. Without biochar, 48±0.2% of the straw carbon was mineralized within the 451 days of the experiment. In comparison, 45±1.6% of C was mineralized after biochar addition of 1.5 g kg-1. In the SOM-labelled soil, the organic matter mineralized more slowly with the increasing doses of biochar. Biochar addition at 7.7 g kg-1 reduced SOM mineralization from 6.6 to 6.3%, during the experimental period. The addition of 15.5 g kg-1 of biochar reduced the mineralized SOM to 5.7%. There is no evidence of increased degradation of either litter or SOM due to biochar addition; consequently, there is no evidence of decreased stability of SOM.
Resumo:
The objective of this work was to determine the contribution of dissolved organic carbon (DOC) from a biochar mineral complex (BMC), so as to better understand the interactions between DOC, biochar, clay, and minerals during thermal treatment, and the effects of BMC on amended soils. The BMC was prepared by heating a mixture of a H3PO4-treated saligna biochar from Acacia saligna, clays, other minerals, and chicken manure. The BMC was applied to a sandy loam soil in Western Australia, where wheat was grown. Liquid chromatography-organic carbon detection (LC-OCD) tests were carried out on water extracts from the untreated biochar, the BMC, the BMC-amended soil, and on a control soil to measure the DOC concentration. LC-OCD tests provide a fingerprint of the DOC, which allows the fractions of DOC to be determined. Thermal processing enhanced the reaction of the A. saligna biochar with manure, clays and minerals, and affected the distribution of the DOC fractions. Notably, the process leads to immobilization of hydrophobic DOC and to an increase in the concentration of low-molecular-weight neutrals in the BMC. The application of the BMC to soil increases the DOC in the amended soil, especially the biopolymer fraction.
Resumo:
The objective of this work was to evaluate the distribution pattern and composition of soil organic matter (SOM) and its physical pools of Leptosols periodically affected by fire over the last 100 years in South Brazil. Soil samples at 0-5, 5-10, and 10-15 cm depths were collected from the following environments: native pasture without burning in the last year and grazed with 0.5 livestock per hectare per year (1NB); native pasture without burning in the last 23 years and grazed with 2.0 livestock per hectare per year (23NB); and an Araucaria forest (AF). Physical fractionation was performed with the 0-5 and 5-10 cm soil layers. Soil C and N stocks were determined in the three depths and in the physical pools, and organic matter was characterized by infrared spectroscopy and thermogravimetry. The largest C stocks in all depths and physical pools were found under the AF. The 23NB environment showed the lowest soil C and N stocks at the 5-15 cm depth, which was related to the end of burning and to the higher grazing intensity. The SOM of the occluded light fraction showed a greater chemical recalcitrance in 1NB than in 23NB. Annual pasture burning does not affect soil C stocks up to 15 cm of depth.
Resumo:
The objective of this work was to evaluate the effects of preceding crops and tillage systems on the incidence of Fusarium wilt (Fusarium oxysporum f. sp. phaseoli) and common bean (Phaseolus vulgaris) yield. The cultivar BRS Valente was cultivated under center‑pivot irrigation in the winter seasons of 2003, 2004 and 2005, after several preceding crops established in the summer seasons. Preceding crops included the legumes Cajanus cajan (pigeon pea), Stylosanthes guianensis, and Crotalaria spectabilis; the grasses Pennisetum glaucum (millet), Sorghum bicolor (forage sorghum), Panicum maximum, and Urochloa brizantha; and a consortium of maize (Zea mays) and U. brizantha (Santa Fé system). Experiments followed a strip‑plot design, with four replicates. Fusarium wilt incidence was higher in the no‑tillage system. Higher disease incidences corresponded to lower bean yields in 2003 and 2004. Previous summer cropping with U. brizantha, U. brizantha + maize consortium, and millet showed the lowest disease incidence. Therefore, the choice of preceding crops must be taken into account for managing Fusarium wilt on irrigated common bean crops in the Brazilian Cerrado.
Resumo:
The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model (DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: adaptive resonance theory, fuzzy ARTMap; self‑organizing map, SOM; and multi‑layer perceptron, MLP. Estimated maps were compared with the conventional soil map to calculate omission and commission errors, overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as a reference to predict soil orders in Serra Gaúcha.