581 resultados para CHRONIC CHAGAS-DISEASE
Resumo:
In Guatemala, the Ministry of Health (MoH) began a vector control project with Japanese cooperation in 2000 to reduce the risk of Chagas disease infection. Rhodnius prolixus is one of the principal vectors and is targeted for elimination. The control method consisted of extensive residual insecticide spraying campaigns, followed by community-based surveillance with selective respraying. Interventions in nine endemic departments identified 317 villages with R. prolixus of 4,417 villages surveyed. Two cycles of residual insecticide spraying covered over 98% of the houses in the identified villages. Fourteen villages reinfestated were all resprayed. Between 2000-2003 and 2008, the number of infested villages decreased from 317 to two and the house infestation rate reduced from 0.86% to 0.0036%. Seroprevalence rates in 2004-2005, when compared with an earlier study in 1998, showed a significant decline from 5.3% to 1.3% among schoolchildren in endemic areas. The total operational cost was US$ 921,815, where the cost ratio between preparatory, attack and surveillance phases was approximately 2:12:1. In 2008, Guatemala was certified for interruption of Chagas disease transmission by R. prolixus. What facilitated the process was existing knowledge in vector control and notable commitment by the MoH, as well as political, managerial and technical support by external stakeholders.
Resumo:
Orally transmitted Chagas disease (ChD), which is a well-known entity in the Brazilian Amazon Region, was first documented in Venezuela in December 2007, when 103 people attending an urban public school in Caracas became infected by ingesting juice that was contaminated with Trypanosoma cruzi. The infection occurred 45-50 days prior to the initiation of the sampling performed in the current study. Parasitological methods were used to diagnose the first nine symptomatic patients; T. cruzi was found in all of them. However, because this outbreak was managed as a sudden emergency during Christmas time, we needed to rapidly evaluate 1,000 people at risk, so we decided to use conventional serology to detect specific IgM and IgG antibodies via ELISA as well as indirect haemagglutination, which produced positive test results for 9.1%, 11.9% and 9.9% of the individuals tested, respectively. In other more restricted patient groups, polymerase chain reaction (PCR) provided more sensitive results (80.4%) than blood cultures (16.2%) and animal inoculations (11.6%). Although the classical diagnosis of acute ChD is mainly based on parasitological findings, highly sensitive and specific serological techniques can provide rapid results during large and severe outbreaks, as described herein. The use of these serological techniques allows prompt treatment of all individuals suspected of being infected, resulting in reduced rates of morbidity and mortality.
Resumo:
Chagas disease control requires an innovative approach to strengthen community participation in vector surveillance. This paper presents a case study of a community-based bug-hunting campaign in Guatemala. The campaign was implemented in 2007 in the following three stages: (i) a four week preparation stage to promote bug-hunting, (ii) a one week bug-hunting stage to capture and collect bugs and (iii) a 10 week follow-up stage to analyse the bugs and spray insecticide. A total of 2,845 bugs were reported, of which 7% were Triatominae vectors, such as Rhodnius prolixus and Triatoma dimidiata. The bug-hunting campaign detected a five-six-fold higher amount of vectors in one week than traditional community-based surveillance detects in one year. The bug-hunting campaign effectively detected vectors during a short period, provided information to update the vector infestation map and increased community and political awareness regarding Chagas disease. This approach could be recommended as an effective and feasible strategy to strengthen vector surveillance on a larger scale.
Resumo:
Certifying the absence of Chagas disease transmission by native vectors lacks scientific grounds and weakens long-term control-surveillance systems to the detriment of people living under risk conditions. Instead, a regular "certification of good practice" (including vector control-surveillance, case detection/patient care and blood safety) could help achieve sustained disease control.
Resumo:
Triatoma dimidiata is the most important Chagas disease insect vector in Central America as this species is primarily responsible for Trypanosoma cruzi transmission to humans, the protozoan parasite that causes Chagas disease. T. dimidiata sensu lato is a genetically diverse assemblage of taxa and effective vector control requires a clear understanding of the geographic distribution and epidemiological importance of its taxa. The nuclear ribosomal internal transcribed spacer 2 (ITS-2) is frequently used to infer the systematics of triatomines. However, oftentimes amplification and sequencing of ITS-2 fails, likely due to both the large polymerase chain reaction (PCR) product and polymerase slippage near the 5' end. To overcome these challenges we have designed new primers that amplify only the 3'-most 200 base pairs of ITS-2. This region distinguishes the ITS-2 group for 100% of known T. dimidiata haplotypes. Furthermore, we have developed a PCR-restriction fragment length polymorphism (RFLP) approach to determine the ITS-2 group, greatly reducing, but not eliminating, the number of amplified products that need to be sequenced. Although there are limitations with this new PCR-RFLP approach, its use will help with understanding the geographic distribution of T. dimidiata taxa and can facilitate other studies characterising the taxa, e.g. their ecology, evolution and epidemiological importance, thus improving vector control.
Resumo:
From an epidemiological point of view, Chagas disease and its reservoirs and vectors can present the following characteristics: (i) enzooty, maintained by wild animals and vectors, with broad occurrence from southern United States of America (USA) to southern Argentina and Chile (42ºN 49ºS), (ii) anthropozoonosis, when man invades the wild ecotope and becomes infected with Trypanosoma cruzi from wild animals or vectors or when the vectors and wild animals, especially marsupials, invade the human domicile and infect man, (iii) zoonosis-amphixenosis and exchanged infection between animals and humans by domestic vectors in endemic areas and (iv) zooanthroponosis, infection that is transmitted from man to animals, by means of domestic vectors, which is the rarest situation in areas endemic for Chagas disease. The characteristics of Chagas disease as an enzooty of wild animals and as an anthropozoonosis are seen most frequently in the Brazilian Amazon and in the Pan-Amazon region as a whole, where there are 33 species of six genera of wild animals: Marsupialia, Chiroptera, Rodentia, Edentata (Xenarthra), Carnivora and Primata and 27 species of triatomines, most of which infected with T. cruzi . These conditions place the resident populations of this area or its visitors - tourists, hunters, fishermen and especially the people whose livelihood involves plant extraction - at risk of being affected by Chagas disease. On the other hand, there has been an exponential increase in the acute cases of Chagas disease in that region through oral transmission of T. cruzi , causing outbreaks of the disease. In four seroepidemiological surveys that were carried out in areas of the microregion of the Negro River, state of Amazonas, in 1991, 1993, 1997 and 2010, we found large numbers of people who were serologically positive for T. cruzi infection. The majority of them and/or their relatives worked in piassava extraction and had come into contact with and were stung by wild triatomines in that area. Finally, a characteristic that is greatly in evidence currently is the migration of people with Chagas disease from endemic areas of Latin America to non-endemic countries. This has created a new dilemma for these countries: the risk of transmission through blood transfusion and the onus of controlling donors and treating migrants with the disease. As an enzooty of wild animals and vectors, and as an anthropozoonosis, Chagas disease cannot be eradicated, but it must be controlled by transmission elimination to man.
Resumo:
Many arthropod species have adopted vertebrate blood as their main food source. Blood is rich in nutrients and, except for the presence of parasites, sterile. However, this food source is not freely available, nor is obtaining it devoid of risk. It circulates inside vessels hidden underneath the skin of mobile hosts that are able to defend themselves and even predate the insects that try to feed on them. Thus, the haematophagous lifestyle is associated with major morphological, physiological and behavioural adaptations that have accumulated throughout the evolutionary history of the various lineages of blood-sucking arthropods. These adaptations have significant consequences for the evolution of parasites as well as for the epidemiology of vector-transmitted diseases. In this review article, we analyse various aspects of the behaviour of triatomine bugs to illustrate how each behavioural trait represents a particular adaptation to their close association with their hosts, which may easily turn into predators. Our aim is to offer to the reader an up-to-date integrative perspective on the behaviour of Chagas disease vectors and to propose new research avenues to encourage both young and experienced colleagues to explore this aspect of triatomine biology.
Resumo:
Several parasitological studies carried out in El Salvador between 2000-2012 showed a higher frequency of acute cases of Chagas disease than that in other Central American countries. There is an urgent need for improved Chagas disease surveillance and vector control programs in the provinces where acute Chagas disease occurs and throughout El Salvador as a whole.
Resumo:
Recognising the importance of Chagas disease in Brazil, Bambuí set up epidemiological surveillance for Chagas disease in 1974 and was the first municipality to do so. To ascertain the current epidemiology of Chagas disease in this municipality, 1.782 blood samples from the general population were analysed; 7.7% of samples were found to be seropositive for Chagas disease. A strong positive correlation between increasing age and Chagas disease was evident in both genders, with the highest prevalence in individuals aged over 60 years. Clinically, the cardiodigestive form of Chagas disease was the most common in these samples. These data confirm the interruption of Trypanosoma cruzi transmission, in parallel with a still important residual morbidity of Chagas disease in the county, thus supporting political decisions that will prioritise epidemiological surveillance and medical treatment of Chagas disease in the coming years.
Resumo:
Nine species of Triatominae, representing three tribes and five genera, are currently known in Suriname. An annotated list of the species based on the collections of the Bureau of Public Health (Suriname), the National Zoological Collection Suriname and the National History Museum Leiden (the Netherlands) is provided. Additionally, the results of several years of opportunistic collection in two domestic environments are presented. The most common species are Rhodnius pictipes Stål, 1972, Rhodnius robustus Larrouse, 1972 and Panstrongylus geniculatus (Latreille, 1811). The significance of the species as vectors of Chagas disease in Suriname is discussed.
Resumo:
This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape.
Resumo:
As an evaluation scheme, we propose certifying for “control”, as alternative to “interruption”, of Chagas disease transmission by native vectors, to project a more achievable and measurable goal and sharing good practices through an “open online platform” rather than “formal certification” to make the key knowledge more accumulable and accessible.
Resumo:
Chagas disease is maintained in nature through the interchange of three cycles: the wild, peridomestic and domestic cycles. The wild cycle, which is enzootic, has existed for millions of years maintained between triatomines and wild mammals. Human infection was only detected in mummies from 4,000-9,000 years ago, before the discovery of the disease by Carlos Chagas in 1909. With the beginning of deforestation in the Americas, two-three centuries ago for the expansion of agriculture and livestock rearing, wild mammals, which had been the food source for triatomines, were removed and new food sources started to appear in peridomestic areas: chicken coops, corrals and pigsties. Some accidental human cases could also have occurred prior to the triatomines in peridomestic areas. Thus, triatomines progressively penetrated households and formed the domestic cycle of Chagas disease. A new epidemiological, economic and social problem has been created through the globalisation of Chagas disease, due to legal and illegal migration of individuals infected by Trypanosoma cruzi or presenting Chagas disease in its varied clinical forms, from endemic countries in Latin America to non-endemic countries in North America, Europe, Asia and Oceania, particularly to the United States of America and Spain. The main objective of the present paper was to present a general view of the interchanges between the wild, peridomestic and domestic cycles of the disease, the development of T. cruzi among triatomine, their domiciliation and control initiatives, the characteristics of the disease in countries in the Americas and the problem of migration to non-endemic countries.
Resumo:
Many patients with Chagas disease live in remote communities that lack both equipment and trained personnel to perform a diagnosis by conventional serology (CS). Thus, reliable tests suitable for use under difficult conditions are required. In this study, we evaluated the ability of personnel with and without laboratory skills to perform immunochromatographic (IC) tests to detect Chagas disease at a primary health care centre (PHCC). We examined whole blood samples from 241 patients and serum samples from 238 patients. Then, we calculated the percentage of overall agreement (POA) between the two groups of operators for the sensitivity (S), specificity (Sp) and positive (PPV) and negative (NPV) predictive values of IC tests compared to CS tests. We also evaluated the level of agreement between ELISAs and indirect haemagglutination (IHA) tests. The readings of the IC test results showed 100% agreement (POA = 1). The IC test on whole blood showed the following values: S = 87.3%; Sp = 98.8%; PPV = 96.9% and NPV = 95.9%. Additionally, the IC test on serum displayed the following results: S = 95.7%; Sp = 100%; PPV = 100% and NPV = 98.2%. Using whole blood, the agreement with ELISA was 96.3% and the agreement with IHA was 94.1%. Using serum, the agreement with ELISA was 97.8% and the agreement with IHA was 96.6%. The IC test performance with serum samples was excellent and demonstrated its usefulness in a PHCC with minimal equipment. If the IC test S value and NPV with whole blood are improved, then this test could also be used in areas lacking laboratories or specialised personnel.
Resumo:
This review deals with transmission ofTrypanosoma cruziby the most important domestic vectors, blood transfusion and oral intake. Among the vectors,Triatoma infestans,Panstrongylus megistus, Rhodnius prolixus,Triatoma dimidiata, Triatoma brasiliensis,Triatoma pseudomaculata, Triatoma sordida,Triatoma maculata, Panstrongylus geniculatus,Rhodnius ecuadoriensis and Rhodnius pallescens can be highlighted. Transmission of Chagas infection, which has been brought under control in some countries in South and Central America, remains a great challenge, particularly considering that many endemic countries do not have control over blood donors. Even more concerning is the case of non-endemic countries that receive thousands of migrants from endemic areas that carry Chagas disease, such as the United States of America, in North America, Spain, in Europe, Japan, in Asia, and Australia, in Oceania. In the Brazilian Amazon Region, since Shaw et al. (1969) described the first acute cases of the disease caused by oral transmission, hundreds of acute cases of the disease due to oral transmission have been described in that region, which is today considered to be endemic for oral transmission. Several other outbreaks of acute Chagas disease by oral transmission have been described in different states of Brazil and in other South American countries.