494 resultados para Revisão de textos
Resumo:
Gravimetric and Bailey-Andrew methods are tedious and provide inflated results. Spectrofotometry is adequate for caffeine analysis but is lengthy. Gas chromatography also is applied to the caffeine analysis but derivatization is needed. High performance liquid chromatography with ultraviolet detection (HPLC-UV) and reversed phase is simple and rapid for xanthine multianalysis. In HPLC-UV-gel permeation, organic solvents are not used. HPLC-mass spectrometry provides an unequivocal structural identification of xanthines. Capillary electrophoresis is fast and the solvent consumption is smaller than in HPLC. Chemometric methods offer an effective means for chemical data handling in multivariate analysis. Infrared spectroscopy alone or associated with chemometries could predict the caffeine content in a very accurate form. Electroanalytical methods are considered of low cost and easy application in caffeine analysis.
Resumo:
There is considerable progress in the study of the biotransformation of limonene. Extensive research on the biotransformation of limonene has resulted in the elucidation of new metabolic pathways. Natural flavors can be produced via biotransformation, satisfying consumer demand for natural products. This review presents some elements concerning the biotransformation of limonene with emphasis on the metabolic pathways. Some comments are also made on problems related to biocatalysis as well as on the application of some compounds originating from the biotransformation of the inexpensive limonene.
Resumo:
The simultaneous use of the specific values of some structural and chemical properties of clay minerals, such as kaolinite, montmorillonite and talc, allows the development of new properties for these materials, especially in relation to the external and internal microcrystal surfaces. These developments are very diversified for montmorillonite, due to the high specific surface area, expansible basal spacings, easy intercalation inside the 2:1 structural layers and a reversible and high cation exchance capacity. The review presents examples of chemical modifications on kaolins, montmorillonites (bentonites) and talcs.
Resumo:
This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.
Resumo:
Incidental ingestion of contaminated soils is a major route of Pb uptake by humans, especially by children. Lead speciation in soils controls its bioavailability. Bioavailability assessment requires the determination of the amount of absorbed lead if a contaminated soil is ingested. In vivo tests, which employ animals, are considered the best model to infer absorption of Pb. But they have some logistic limitations and several authors proposed in vitro methods, which simulate conditions of human digestion. Many of them present results which correlate with in vivo essays. Several authors consider in vitro tests a good and reliable alternative to infer lead bioavailability.
Resumo:
This paper discusses the Brazilian academic production on Chemical Education. The main source of information is the annual meeting of the Brazilian Chemical Society (RASBQ) covering the period 1999-2006. All the papers presented by the Division of Chemical Education of the RASBQ were reviewed to permit a discussion about the development of the area in Brazil. This bibliographical revision comprises the following aspects: year of presentation, Brazilian region and institution of production, scholastic level encompassed by the study, the kind of academic work (or research type) and thematic focus of the study.
Resumo:
Advanced oxidative processes (AOPs) are based on chemical processes that can generate free radicals, such as hydroxyl radicals (.OH) which are strong, non-selective oxidant species that react with the vast majority of organic compounds. Nanostructured semiconductors, especially titanium dioxide (TiO2) in the anatase phase, are well-established photocatalysts for this process, which have proved to be useful in the degradation of dyes, pesticides and other contaminants. Research in different strategies for the synthesis of nanostructured semiconductors, with particular characteristic is currently a topic of interest in many studies. Thus, this paper presents a review about various synthesis strategies of nanostructured photocatalysts.
Resumo:
The present review paper describes the main features of nickel hydroxide modified electrodes covering its structural and electrochemical behavior and the newest advances promoted by nanostructured architectures. Important aspects such as synthetic procedures and characterization techniques such as X-Ray diffraction, Raman and Infrared spectroscopy, Electronic Microscopy and many others are detailed herein. The most important aspect concerning nickel hydroxide is related to its great versatility covering different fields in electrochemical-based devices such as batteries, electrocatalytic systems and electrochromic electrodes, the fundamental issues of these devices are also commented. Finally, some of the newest advances achieved in each field by the incorporation of nanomaterials will be shown.
Resumo:
The inadequacy of strategies used for the heterogeneization of metallocene catalysts is pointed out as one of the main causes of the lack of industrial employability of such polymerization catalysts. The main problems are the necessity of large quantity of MAO (cocatalyst) and the inability to control molecular mass distribution of the polymers. Based on this background, the main strategies for the heterogeneization of metallocenes are here reviewed. The advantages and disadvantages of each strategy are presented and discussed on theoretical and practical perspective. Considering the results reported on the different researches, outcomes of heterogeneization strategies are pointed out.
Resumo:
It is very well known that the addition of polymers to a liquid increases the shear viscosity of the solution. In other words, the polymer increases the dissipation of the flow energy. Contrarily, in turbulent flow, some particular macromolecules in very low concentration are able to produce large attenuation in the turbulence and thus, decreasing the dissipation of the energy. This article present a brief revision about macroscopic and molecular models used to explain this dynamic effect. Some of the experimental techniques used to quantify the attenuation of the turbulence and the main active substances are also discussed.
Resumo:
Niacin (nicotinamide, nicotinic acid) interferes on homeostasis, DNA regulation, signaling and longevity. Nicotinic acid reduces synthesis of lipoproteins-apo-B and increases HDL. Its antilipemic action in liver produces: 1) inhibition of DGAT2, with decreased triacylglycerol synthesis, 2) downregulation of the b-chain of adenosine triphosphate synthase, leading to reduced HDL-apo-A-I catabolism. Nicotinic acid could increase redox potential in vascular endothelium. HM74A receptor activation in macrophages would be responsible for the release of prostaglandins, causing flushing in epidermis. HM74A agonists could assist in identifying antilipemic agents. Extended release niacin in combination with statin appears to protect cardiovascular system of patients with low HDL.
Resumo:
Formaldehyde has been classified as a probable human carcinogen. Indoor air quality measurements carried out worldwide in schools indicate that levels may be of concern. This paper provides an overview of emission sources, properties and methods for quantification of formaldehyde. Quantitative information from studies performed in school environments was compiled and a comprehensive picture of the causal relationships between pollutant exposures and children's health given. Mitigation actions to reduce formaldehyde levels and its adverse impacts in school buildings are recommended.
Resumo:
The use of natural fibers as reinforcement in polymer composites has been a focus of interest. However, these composites exhibit lower mechanical properties than those of pure polymers because of the low interfacial interactions between the hydrophobic polymer matrix and the hydrophilic fiber. To overcome this problem, different chemical treatments applied to the fibers have been reported. One of the most used treatments is mercerization, which can improve adhesion between the fiber and polymeric matrix. Another chemical treatment involves the use of acids (stearic and oleic acids). The chemically treated fibers used in composite materials showed improved mechanical properties.
Resumo:
A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more specifically hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and maghemite (γ-Fe2O3), in heterogeneous catalysis.
Resumo:
Metabolic reactive intermediates can react with biomolecules such as DNA and proteins to produce adducts. Recently, research has shown that such adducts can act as precursors of some chronic diseases (cancer, Parkinson's, immunologic system diseases, etc.), and their determination is important because they are biomarkers of undesirable health effects. These compounds are produced at very low concentrations, but the development and dissemination of sensitive new analytical tools, especially those based on chromatography coupled to other analytical instruments, make such determinations possible. This mini review is focused on the formation of reactive intermediates, their reaction with biomolecules, and the importance of their determination.