551 resultados para Métodos Analíticos
Resumo:
The CBS-4M, CBS-QB3, G2, G2(MP2), G3 and G3(MP2) model chemistry methods have been used to calculate proton and electron affinities for a set of molecular and atomic systems. Agreement with the experimental value for these electronic properties is quite good considering the uncertainty in the experimental data. A comparison among the six theories using statistical analysis (average value, standard deviation and root-mean-square) showed a better performance of CBS-QB3 to obtain these properties.
Resumo:
The goal of this work is the development and validation of an analytical method for fast quantification of sibutramine in pharmaceutical formulations, using diffuse reflectance infrared spectroscopy and partial least square regression. The multivariate model was elaborated from 22 mixtures containing sibutramine and excipients (lactose, microcrystalline cellulose, colloidal silicon dioxide and magnesium stearate) and using fragmented (750-1150/ 1350-1500/ 1850-1950/ 2600-2900 cm-1) and smoothing spectral data. Using 10 latent variables, excellent predictive capacity were observed in the calibration (n=20, RMSEC=0.004, R= 0.999) and external validation (n=5, RMSEC= 9.36, R=0.999) phases. In the analysis of synthetic mixtures the precision (SD=3,47%) was compatible with the rules of the Agencia Nacional de Vigilância Sanitária (ANVISA-Brazil). In the analysis of commercial drugs good agreement was observed between spectroscopic and chromatographic methods.
Resumo:
A computational method to simulate the changes in the electronic structure of Ga1-xMn xN was performed in order to improve the understanding of the indirect contribution of Mn atoms. This periodic quantum-mechanical method is based on density functional theory at B3LYP level. The electronic structures are compared with experimental data of the absorption edge of the GaMnN. It was observed that the indirect influence of Mn through the structural parameters can account for the main part of the band gap variation for materials in the diluted regime (x<0.08), and is still significant for higher compositions (x~0.18).
Resumo:
Computational methods for the calculation of dynamical properties of fluids might consider the system as a continuum or as an assembly of molecules. Molecular dynamics (MD) simulation includes molecular resolution, whereas computational fluid dynamics (CFD) considers the fluid as a continuum. This work provides a review of hybrid methods MD/CFD recently proposed in the literature. Theoretical foundations, basic approaches of computational methods, and dynamical properties typically calculated by MD and CFD are first presented in order to appreciate the similarities and differences between these two methods. Then, methods for coupling MD and CFD, and applications of hybrid simulations MD/CFD, are presented.
Resumo:
In this work a sulfide quantification protocol using voltammetric methods was developed to evaluate the effect of dissolved sulfides on copper complexation. On the basis of pH, sulfide release from the dissociation of specific metal sulfide complexes can be electrochemically measured and then removed (as H2S) by a N2 purge. Cathodic stripping square wave voltammetry (CSSWV) was conducted to quantify Cu sulfides complexes which dissociate at pH < 5.0 during the process of acid titration.
Resumo:
For decades the Hydroxyapatite (HA) was only bioceramic of calcium phosphate system used for bone replacement and regeneration, due to its similarity to the mineral phase of bones and teeth. Because its slow degradation, other calcium phosphate classified as biodegradable started to awaken interest, such as: amorphous calcium phosphate (ACP), octacalcium phosphate (OCP) and tricalcium phosphate (TCP). This work presents the evolution of the use of other calcium phosphates due to their better solubility than the HA, comparing their main physical-chemical and biological properties. Are also presented the main methods used to obtain bioceramic coatings on metal and polymer surfaces.
Resumo:
This work presents a density functional theory study of the norbornene ROMP metathesis reactions. The energies have been calculated in a Grubbs catalyst model Cl2(PH3)2Ru=CH2. The geometries and energy profile are similar to the Grubbs metilydene (Cl2(PCy3)2Ru=CH2 real model. It was found that the metathesis reaction proceeds via associative mechanism (catalyst-norbonene) followed by dissociative substitution of a phosphine ligand with norbonene, giving a monophosphine complex. The results are in reasonable agreement with the available experimental data. The dissociation energy of the phosphines is predicted to be 23.2 kcal mol-1.
Resumo:
Pulp hemicelluloses can be extracted with NaOH and quantified by colorimetric and gravimetric techniques. However the most usual methods to measure eucalyptus pulp hemicelluloses have been through the pentosan method or through xylan analyses by GC or HPLC techniques. In this study a comparison was made between the more traditional methods and indirect method of NaOH 5% extraction followed by colorimetric analyses. It was observed that the content of NaOH 5% extract correlates very well with pulp xylan content and reasonably well with the pentosan content. It is concluded that the 5% NaOH solubility method can be used in replacement of the other two, since it is faster, simpler and less costly to carry out than the others.
Resumo:
In the literature there are a considerable number of chemical and biochemical tests for evaluation of in vitro antioxidant activities of pure compounds or fractions and organic extracts. These tests are important tools for screening of synthetic and natural bioactive compound as well as they can be employed in food chemistry. This work is a critical review of the main methods employed for in vitro antioxidant determination.
Resumo:
In this work, the organic compounds of cigar samples from different brands were analyzed. The compound extraction was made using the matrix solid-phase dispersion (MSPD) technique, followed by gas chromatography and identification by mass spectrometry (GC-MS) and standards, when available. Thirty eight organic compounds were found in seven different brands. Finally, with the objective of characterizing and discriminating the cigar samples, multivariate statistical analyses were applied to data, e.g.; principal component analysis (PCA) and hierarchical cluster analysis (HCA). With such analyses, it was possible to discriminate three main groups of three quality levels.
Resumo:
This paper evaluates the adsorption capacity of zirconocene-based silica materials in the pre-concentration of antimicrobians (tetracycline, sulfamethoxazole and trimethoprim) in aqueous medium. These materials were prepared by grafting the zirconocene onto silicas pre-treated at different temperatures. The retention capacity of these materials was evaluated by off line SPE and HPLC-UV and the proposed methodology was validated in ultrapure, tap and river water. The recovery for tetracycline was 72% (in the solid phase A) and, for sulfamethoxazole and trimethoprim was 68 and 95% in the commercial C18, respectively. The target antimicrobians were not detected in the Arroio Dilúvio (Porto Alegre - RS).
Resumo:
Composite methods using ONIOM and different basis sets have been used to calculate proton and electron affinities for a set of alcohols at QCISD(T)/6-311++G(2df,p) level of theory. The study was carried out considering HF, MP2 and DFT (25 exchange correlation functional) methods. The calculation performed at ONIOM2(QCISD(T)/6-311++G(2df,p):HF/6-31G(d))//ONIOM2(O3LYP/6-31G(d):HF/6-31G(d)) resulted in the smallest average absolute deviation for AP and AE, 4,75 kJ/mol e 0,43 eV, respectively.
Resumo:
Solid lipid nanoparticles have been extensively investigated as drug delivery systems. These colloidal systems have major advantages compared to others more traditional. Reported advantages include sustained release, ability to solubilize lipophilic drugs, increased physical and chemical stability of labile molecules, decreased unwanted side-effects showing lower toxicity, and scale up facilities. This paper aims at reviewing the traditional methods of solid lipid nanoparticles production, such as fusion-emulsification (hot and cold), solvent evaporation-emulsification and microemulsion, dealing with the main technological parameters that influence the quality properties of solid lipid nanoparticles.
Resumo:
In the recent years, analytical toxicologists have been facing difficulties in detecting designer drugs due to the chemical modifications on the existing structures and the speed in which they are released into the market, requiring the development and improvement of specific and appropriate analytical methods. This work is a review of the literature which summarizes the characteristics of the drugs and the analytical validated methods using conventional and unconventional matrices currently used for correct identification and quantification of the following classes of emerging drugs of abuse: derivatives of opiates, amphetamines, tryptamines, piperazines and cannabinoids.
Resumo:
This work applied a 2² factorial design to the optimization of the extraction of seven elements (calcium, magnesium, potassium, iron, zinc, copper and manganese) in brachiaria leaves, determined by flame atomic absorption spectrometry. The factors sample mass and digestion type were evaluated at two levels: 200/500 mg, and dry/wet, respectively. Principal component analysis allowed simultaneous discrimination of all the significant effects in one biplot. Wet digestion and mass of 200 mg were considered the best conditions. The decrease of 60% in sample mass allowed to save costs and reagents. The method was validated through the estimation of figures of merit.