548 resultados para Metais - Propriedades mecanicas
Resumo:
In rivers, sediments act as sinks for retaining contaminants. This study evaluated the influence of sediment humic substances (HS) on the bioavailability of metals. The levels of metals in sediments and HS indicated that most are complexed with HS. Characterization of HS showed a high degree of humification. The complexation capacity of HS for metals established the affinity order:Pb2+
Resumo:
Structural and electronic properties of titanium dioxide (TiO2) thin films, in anatase phase, were investigated using periodic 2D calculations at density functional theory (DFT) level with B3LYP hybrid functional. The Grimme dispersion correction (DFT/B3LYP-D*) was included to better reproduce structural features. The electronic properties were discussed based on the band gap energy, and proved dependent on surface termination. Surface energies ranged from 0.80 to 2.07 J/m², with the stability orders: (101) > (100) > (112) > (110) ~ (103) > (001) >> (111), and crystal shape by Wulff construction in accordance with experimental data.
Resumo:
This article describes the development of a new catalytic reactor designed to operate with nanoparticle-embedded polymer thin films. Stabilization of metal nanoparticles in films that serve as catalysts in organic reactions is relatively new; therefore, the development of reactors to facilitate their use is necessary. We describe in detail the preparation of the GDCR reactor-type "dip catalyst" and its evaluation in the Suzuki - Miyaura cross-coupling reaction of phenylboronic acid and 4-bromoanisole catalyzed by palladium nanoparticle-embedded cellulose acetate thin film (CA/PD(0)). Compared with earlier prototypes, GDCR reactor showed excellent results when operating with CA/PD(0) thin films.
Resumo:
Precise surface area is needed for accurate characterization of self-assembled monolayers (SAMs) on metallic surfaces. The aim of this manuscript was to emphasize that miscalculation of surface area is the major source of errors in SAM electrochemical characterization. Limitations are discussed and recommendations given for beginners in analyses of SAM functionalized electrodes. The electrochemical measurements and examples were based on bare gold electrode immobilized with dodecanethiol. The degree of compression of the monolayer properties of formation and reproducibility of the electrochemical response depends on roughness factor, with values closer to the unit being better.
Resumo:
This paper describes the evaluation of simple and fast solubilization methods for the determination of Ca, Mg, and K in glycerin samples from biodiesel production by atomic spectrometry. The solubilization in water was compared with two other methods: solubilization in formic acid and solubilization in ethanol. Using solubilization in water, determination of the three analytes was possible; the values of limits of detection for Ca, K, Mg were 0.31, 0.06, and 0.16 mg kg−1, respectively. Because no adequate reference material was available, the accuracy was evaluated by assessing the recoveries tests with both solubilization methods; the evaluation ranged from 90% to 115%, with values of relative standard deviation >8%, indicating good accuracy of the measure. Four crude glycerin samples obtained from biodiesel plants of Rio Grande do Sul were analyzed after treatment with the different methods of solubilization, and the obtained results of Ca, Mg, and K concentration were in agreement with the values obtained from both solubilization methods. Therefore, solubilization in water is concluded to be a simpler, faster, and viable method for sample preparation of glycerin.
Resumo:
The aim of this study was to investigate the effect of surface treatment on the properties of waste piassava fiber with the goal of aggregating additional business value. The fiber surface was subjected to four different treatments. In the present work, it was found that washing the fibers with water partially removed impurities from the surface rendering it rougher. Alkaline treatment removed impurities from the surface, hemicellulose and lignin, improving the flexibility of the fibers. Increasing the concentration of washing agents, times and temperature of treatment promoted intense defibrillation on the fiber surface, reducing its strength.
Resumo:
Bleached eucalypt kraft pulps are widely used in print and writing (P&W) and tissue paper manufacture. Among the quality requirements of pulp for these papers, xylan content has been controversial. The objective of this study was to evaluate the influence of xylan content on bleachability, hygroscopic, physic-mechanical and optical properties of the pulp. In this study industrial unbleached eucalyptus kraft pulp (15.6% xylans) treated with different NaOH loads to change its xylan content was used. Subsequently, pulps were bleached by the ODHT(EP)D sequence to achieve 90% ISO of brightness, then refined and submitted to hygroscopic, physicomechanical and optical tests. NaOH treatments decreased the xylan content to 14.5-5.9% using NaOH loads of 10-70 g L-1. Pulp bleachability was not significantly affected by xylan content decrease. The decrease in xylan content negatively affected the water retention value and Klemm capillarity of the pulp, while water absorption capacity was positively affected. Tensile and tear index were negatively influenced by the reduction in xylan content, whereas bulk and light scattering coefficient increased.
Resumo:
Chlorine, one of the most frequent elements on earth and most important key chemicals, is indispensable in the syllabi of school and university courses in Inorganic Chemistry. However, its toxicity and high volatility preclude experimental demonstration of its properties in secondary and high schools and most university labs. This paper summarises the industrial role of chlorine and presents miniaturised experiments demonstrating some of the processes used in Industrial Inorganic Chemistry. Furthermore, experiments illustrating important concepts of Inorganic Chemistry such as Ion Bonding and Molecular Orbital Theory are describe.
Resumo:
AbstractFilms obtained by blends between starch and other polymers and films developed with the addition of an oil can show higher water vapor barriers and improved mechanical properties. Films with starch/PVOH/alginate were obtained by adding copaiba and lemongrass essential oils (EOs). Films without oil served as the control. The microstructure, water vapor permeability (PVA), mechanical properties, and antifungal activity were determined for the films. The effects of the addition of the EOs on the properties of the films were dependent of the concentration and type of oil. The films with 0.5% lemongrass EO were similar to the control films. These films showed a 2.02 × 10-12 g s-1Pa m-1 PVA, 11.43 MPa tensile stress, 13.23% elongation, and 247.95 MPa/mm resistance at perforation. The addition of 1% of copaiba EO increased the PVA from 0.5 × 10-12 to 12.1 × 10-12 g s-1 Pa m-1 and the diffusion coefficient from 0.17 × 10-8 to 7.15 × 10-8m2/day. Films with quantities of EOs displayed fissures and micropores; the control films developed micropores with smaller diameters than films with EOs. The addition of EOs did not change the resulting infrared spectrum of the films. The films with oil displayed a diminished development of the Fusarium sp. culture, and the film without EOs did not display notable differences in the development of the culture. The starch/PVOH/alginate films with 0.5% lemongrass EO were the most suited for the development of a packaging active system.
Resumo:
AbstractThe purpose of this study was to evaluate the best operating conditions of ICP OES for the determination of Na, Ca, Mg, Sr and Fe in aqueous extract of crude oil obtained after hot extraction with organic solvents (ASTM D 6470-99 modified). Thus, the full factorial design and central composite design were used to optimize the best conditions for the flow of nebulization gas, the flow of auxiliary gas, and radio frequency power. After optimization of variables, a study to obtain correct classification of the 18 samples of aqueous extract of crude oils (E1 to E18) from three production and refining fields was carried out. Exploratory analysis of these extracts was performed by principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA), using the original variables as the concentration of the metals Na, Ca, Mg, Sr and Fe determined by ICP OES.
Resumo:
Ni–W–P electrodeposits were synthesized in a Hull cell in order to simulate the obtainment under industrial conditions. Complete coverage of panels was accomplished by applying total currents of 1.0 and 2.0 A. Panels obtained with a current of 1.0 A appeared brighter. The best compositional uniformities, as determined by Energy Dispersive Spectrometer (EDS) occurred in the current density ranges of 0.6 to 3.0 A dm−2 and 1.6 to 6.0 A dm−2 obtained with 1.0 and 2.0 A, respectively. However, the best morphological characteristics, as determined by Scanning Electro Microscope (SEM), were observed in those obtained with a total current of 1.0 A. Analysis of corrosion resistance by Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Linear Polarization (PLP) in NaCl have shown significant variations in the amount of corrosion potential, polarization resistance, and even total impedance. The alloys exhibited amorphous character (XRD) and crystallized above 400 °C to Ni and Ni3P phases, and possibly Ni–W, with a subsequent increase in hardness. The results suggest that under industrial conditions, current density variations due to the large and complex geometric shapes of substrates lead to formation of distinct alloys. Furthermore, these materials are potential substitutes for chromium deposits in many applications.
Resumo:
Bioaccumulation of Ag, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn was determined in the gills and liver of Cyprinus carpio and related to concentrations in the sediment and water of the Alagados Reservoir, Ponta Grossa/Paraná. Cd and Fe exceeded the legal limit for water. Fe was the most abundant metal in the reservoir's water and sediment. The metals in the sediment were below the level of probable adverse effects on biota. There were no significant differences between sampling sites for water and sediment. Liver and gills had higher concentrations of Al, Fe and Zn, with a significant increase in Al (P > 0.05) compared to the increase in weight and size of the specimens. Statistically, gills showed higher concentrations of Al, Cd, Co, Cr, Mn and Zn and liver higher concentrations of Cu and Fe. Co, Cu, Fe, Mn and Zn showed significant differences (P < 0.01) between the organs. The bioaccumulation factors (BAF) showed that the interaction of water with gills promotes greater accumulation of metals in this organ. Despite the low concentrations in the reservoir, bioaccumulation of metals in gills and liver of C. carpio occurs by its interaction with contaminated water and sediment, respectively.
Resumo:
Optimization of the main parameters of SWASV using boron-doped diamond electrode was described for the simultaneous determination of Zn, Cd, Pb and Cu free in coconut water. The values of electroanalytical parameters studied were optimized with the factorial design and center composite design. The optimized parameters for the preconcentration of metals were -1.50 V for potential, and 240 s for deposition time. For SWV, the optimized value was 11.56 mV for step potential. In addition, frequency and pulse height were defined at 100 Hz and 55 mV, respectively. Furthermore, the concentration of the supporting electrolyte (acetate buffer, pH 4.7) was optimized in 0.206 mol L-1. The optimized procedure was applied in two samples of coconut water: natural and processed. The limits of detection (LOD) obtained for Zn, Cd, Pb and Cu were 7.2; 4.4; 3.3 and 1.5 µg L-1, respectively. The concentrations of Cd and Pb were not detected. On the other hand, the values found for the concentrations of Zn and Cu were: < LOD (29 µg L-1) and (6.8 ± 0.9) µg L-1 for the natural sample; and (85.8 ± 4.2) µg L-1 and (7.7 ± 0.6) µg L-1 for the processed sample, respectively.
Resumo:
This work presents the synthesis of silicas containing cetyltrialkylammoniun surfactants in their mesopores. Initially, the aqueous dispersions of these surfactants were characterized by small-angle X-ray scattering (SAXS). The hybrid silicas obtained from these dispersions were evaluated by X-ray diffractometry (XRD) and nitrogen physisorption. The XRD showed that, increasing the head size, there is a shift of the peak corresponding to the (100) diffraction plane to smaller 2θ angles, which indicates an increase in the silicas porous diameter. The increasing of the silicas porous diameter was confirmed by nitrogen physisorption. The base catalytic properties of these hybrid silicas were evaluated in the transesterification reaction showing that those containing the cations C16Et3+ and C16Pr3+ showed better performance.