362 resultados para Araneae. Heterogeneidade de habitat. Complexidade. Estrutura da vegetação. Caatinga
Resumo:
Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.
Resumo:
Visceral leishmaniasis, or kala-azar, is recognised as a serious emerging public health problem in India. In this study, environmental parameters, such as land surface temperature (LST) and renormalised difference vegetation indices (RDVI), were used to delineate the association between environmental variables and Phlebotomus argentipes abundance in a representative endemic region of Bihar, India. The adult P. argentipes were collected between September 2009-February 2010 using the hand-held aspirator technique. The distribution of P. argentipes was analysed with the LST and RDVI of the peak and lean seasons. The association between environmental covariates and P. argentipes density was analysed a multivariate linear regression model. The sandfly density at its maximum in September, whereas the minimum density was recorded in January. The regression model indicated that the season, minimum LST, mean LST and mean RDVI were the best environmental covariates for the P. argentipes distribution. The final model indicated that nearly 74% of the variance of sandfly density could be explained by these environmental covariates. This approach might be useful for mapping and predicting the distribution of P. argentipes, which may help the health agencies that are involved in the kala-azar control programme focus on high-risk areas.