496 resultados para Áreas clássicas de fenomenologia e suas aplicações


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical imprinting technology has been widely used as a valuable tool in selective recognition of a given target analyte (molecule or metal ion), yielding a notable advance in the development of new analytical protocols. Since their discovery, molecularly imprinted polymers (MIPs) have been extensively studied with excellent reviews published. However, studies involving ion imprinted polymers (IIPs), in which metal ions are recognized in the presence of closely related inorganic ions, remain scarce. Thus, this review involved a survey of different synthetic approaches for preparing ion imprinted adsorbents and their application for the development of solid phase extraction methods, metal ion sensors (electrodes and optodes) and selective membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) form a new class of materials with well-defined yet tunable properties. These are crystalline, highly porous and exhibit strong metal-ligand interactions. Importantly, their physical and chemical properties, including pore size, pore structure, acidity, and magnetic and optical characteristics, can be tailored by choosing the appropriate ligands and metal precursors. Here we review the key aspects of synthesis and characterization of MOFs, focusing on lanthanide-based and vanadium-based materials. We also outline some of their applications in catalysis and materials science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Difenoconazole residues in strawberry fruit cultivated in pots were estimated using the solid-liquid extraction with low temperature partition (SLE/LTP) method for sample preparation and gas chromatography with electron capture detection (GC/ECD) for analysis. The optimized method presented excellent recovery values from fortified samples and reproducibility (average recovery values ≥ 98%; CV values < 15%). Linearity of response was demonstrated (r = 0.995) with a detection limit of 9 µg kg-1. The method was successfully applied for the determination of difenoconazole residues in strawberries. Based on these results, the fungicide dissipates quickly, but the residual concentration increases after multiple applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymatic conversion of gaseous substrates into products in aquo-restricted media, using enzymes or whole cells (free and immobilized) as biocatalysts, constitutes a promising technology for the development of clearer processes. Solid-gas systems offer high production rates for minimal plant sizes, allow important reduction of treated volumes, and permit simplified downstream processes. In this review article, principles and applications of solid-gas biocatalysis are discussed. Comparisons of its advantages and disadvantages with those of the organic- and aqueous-phase reactions are also presented herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes the use of a graphite-Araldite® 70% (graphite, m/m) composite electrode in didactic experiments, specifically in the quantitative determination of the neurotransmitter dopamine (DA) in a sample of pharmaceutical formulation. The goal is to demonstrate the possibility of using voltammetric techniques in quality control of medicines, besides covering some concepts such as the influence of pH on the redox process, the differential pulse voltammetry (DPV) technique, the optimization of experiments and comparison with an official method described in the United States Pharmacopoeia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1,3-propanediol is a high-value specialty chemical which has many industrial applications. Its main use is the production of the polymer polypropylene terephthalate, a thermoplastic used in the textile and automobile industries. The interest in 1,3-propanediol production from glycerol bio-conversion has increased after the employment of biodiesel by various countries, being produced by chemical synthesis from petroleum intermediates or biotechnologically by microbial fermentation. Glycerol is an abundant low-cost byproduct from biodiesel refineries, and it is the only substrate that can be naturally or enzymatically converted to 1,3-propanediol by microbial fermentation. In this review, information on 1,3-propanediol's importance, production and purification are presented, along with results from recent research on glycerol microbial conversion to 1,3-propanediol. The bio-production of this intermediate compound from glycerol is very attractive both economically and environmentally, since it allows the replacement of fossil fuels by renewable resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymes are biological catalysts that offer great potential for use in the synthesis and modification of polymers, being more specific and greener than chemical catalysts. In this work, enzymes from the classes of hydrolases (lipase, cutinase and protease) and of oxidoreductases (horseradish peroxidase, manganese peroxidase and laccase) were identified as the main biocatalysts responsible for the synthesis of polymers. Biocatalysis can potentially be part of the life cycle of several polymers, including polyesters, polyurethanes, polycarbonates, polyamides, functionalized polysaccharides and polystyrene, allowing the synthesis of specialty macromolecules for fine applications and with higher added-value than commodity polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of biomass as an alternative to nonrenewable feedstock for energy, materials, and chemicals is currently a prominent theme for industry and R Countries like Brazil, USA, and Germany are spending resources and efforts to promote a green economy based on biomass supply chains. Chemical analysis is an important tool to ensure quality, reliability, and to suggest the best potential use for the biomass, thereby enhancing its economic potential. Analytical techniques can identify chemical components, characterize their properties, and determine their concentration. This article discusses the commonly employed techniques and their application in chemical analysis of biomass and its products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a proposal for using recycled graphite electrodes obtained from exhausted commercial 1.5 V batteries and its application in electroanalysis. The electrode could be prepared by the students and applied in the simple didactic experiments suggested, such as determination of active electrode area, cyclic voltammetry and useful potential range (also called "potential window"), demonstration and effect of scan rate on cyclic voltammograms. The possibility of using the graphite electrode in quantitative analysis was also demonstrated using the ferricyanide/ferrocyanide reversible redox couple ([Fe(CN)6]3-/[Fe(CN)6]4-) as an electrochemical probe by the dependence of peak current with the analyte concentration and flow injection analysis with amperometric detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS) is a resolution method that has been efficiently applied in many different fields, such as process analysis, environmental data and, more recently, hyperspectral image analysis. When applied to second order data (or to three-way data) arrays, recovery of the underlying basis vectors in both measurement orders (i.e. signal and concentration orders) from the data matrix can be achieved without ambiguities if the trilinear model constraint is considered during the ALS optimization. This work summarizes different protocols of MCR-ALS application, presenting a case study: near-infrared image spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constant evolution of science and the growing demand for new technologies have led to new techniques in instrumentation that can improve detection, separation, resolution, and peak capacity. Comprehensive two-dimensional liquid chromatography (LC×LC) is presented as a powerful tool in complex sample analyses. During an analysis, a sample is subjected to two independent separation mechanisms that are combined, resulting in increased resolving power. For appropriate application of LC×LC, understanding the influence of parameters that require optimization is necessary. The main purpose of optimization is to predict the combination of stationary phases, separation conditions, and instrumental requirements to obtain the best separation performance. This review discusses theoretical, intrumental, and chemometric aspects of LC×LC and focuses on its applications in foods. It aims to provide a clear understanding of the aspects that can be used as strategies in the optimization of this analytical method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractThis study evaluates the chemical processes responsible for the nitrous oxide (N2O) and methane (CH4) fluxes in the managed pasture (PM) and unmanaged pasture (PNM). In addition, the impact of nitrogen fertilization on the N2O and CH4 fluxes was assessed. The experiments were conducted on three farms in Alta Floresta city in the state of Mato Grosso. Both regular and intensive samples were collected from PM, PNM, and forest areas for each of the properties. The gases were sampled using static chambers in the morning. Higher N2O fluxes were recorded in the PMs, whereas the CH4 fluxes showed no influence of nitrogen fertilization in both regular and intensive samples. Low fertilizer levels resulted in low N2O emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractThe types of compounds used in the production of biomaterials, namely metals, ceramics, synthetic and natural polymers, as well as composite materials, are discussed in the present work, together with details of their application and evolution from biocompatible to bioactive, biodegradable, and biomimetic clinical products. The chemical structure, the three-dimensional structure, and the molecular organization of compounds frequently used in the manufacture of relevant classes of biomaterials are discussed, along with their advantages and some of their major limitations in specific clinical applications. The main chemical, physical, mechanical, and biological requirements of biomaterials categories are presented, as well as typical tissular responses to implanted biomaterials. Reasons for the recent economic growth of the biomaterials market segment are addressed, and the most successful biomaterial categories are discussed, emphasizing areas such as orthopedic and cardiovascular implants, regenerative medicine, tissue engineering, and controlled drug release devices. Finally, the need for the development of innovative and more accessible biomaterials, due to the expected increase in the number of elderly people and the growing trend of personalized medical procedures, is pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past few years, photoredox catalysis has become a powerful tool in the field of organic synthesis. Using this efficient method, it is possible to excite organic compounds from visible light and attain alternative mechanistic pathways for the formation of chemical bonds, a result which is not obtainable by classical methods. The rapid growth of work in the area of photoredox catalysis is due to its low cost, broad chemical utility protocols, and, especially, its relevancy from the green and sustainable chemistry viewpoints. Thus, this study proposes a brief theoretical discussion of and highlights recent advances in visible-light-induced photoredox catalysis through the analysis of catalytic cycles and intermediates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sample preparation is commonly considered a key step to achieve selective, sensitive, and reliable chemical analyses, particularly those involving complex matrices. Although the application of electric fields to improve the speed and efficiency of sample preparation methods has been proven, this approach is still considered to be state-of-the-art; hence, further development is necessary to improve future applications. This review describes the fundamentals, advances, applications, and perspectives of using electric fields to enhance sample preparation techniques such as liquid-liquid and solid-liquid extractions in conventional and microscale devices.