335 resultados para Leishmania amazonensis s.l.
Resumo:
Several natural compounds have been identified for the treatment of leishmaniasis. Among them are some alkaloids, chalcones, lactones, tetralones, and saponins. The new compound reported here, 7-geranyloxycoumarin, called aurapten, belongs to the chemical class of the coumarins and has a molecular weight of 298.37. The compund was extracted from the Rutaceae species Esenbeckia febrifuga and was purified from a hexane extract starting from 407.7 g of dried leaves and followed by four silica gel chromatographic fractionation steps using different solvents as the mobile phase. The resulting compound (47 mg) of shows significant growth inhibition with an LD50 of 30 µM against the tropical parasite Leishmania major, which causes severe clinical manifestations in humans and is endemic in the tropical and subtropical regions. In the present study, we investigated the atomic structure of aurapten in order to determine the existence of common structural motifs that might be related to other coumarins and potentially to other identified inhibitors of Leishmania growth and viability. This compound has a comparable inhibitory activity of other isolated molecules. The aurapten is a planar molecule constituted of an aromatic system with electron delocalization. A hydrophobic side chain consisting of ten carbon atoms with two double bonds and negative density has been identified and may be relevant for further compound synthesis.
Resumo:
Apoptosis is the most common phenotype observed when cells die through programmed cell death. The morphologic and biochemical changes that characterize apoptotic cells depend on the activation of a diverse set of genes. Apoptosis is essential for multicellular organisms since their development and homeostasis are dependent on extensive cell renewal. In fact, there is strong evidence for the correlation between the emergence of multicellular organisms and apoptosis during evolution. On the other hand, no obvious advantages can be envisaged for unicellular organisms to carry the complex machinery required for programmed cell death. However, accumulating evidence shows that free-living and parasitic protozoa as well as yeasts display apoptotic markers. This phenomenon has been related to altruistic behavior, when a subpopulation of protozoa or yeasts dies by apoptosis, with clear benefits for the entire population. Recently, phosphatidylserine (PS) exposure and its recognition by a specific receptor (PSR) were implicated in the infectivity of amastigote forms of Leishmania, an obligatory vertebrate intramacrophagic parasite, showing for the first time that unicellular organisms use apoptotic features for the establishment and/or maintenance of infection. Here we focus on PS exposure in the outer leaflet of the plasma membrane - an early hallmark of apoptosis - and how it modulates the inflammatory activity of phagocytic cells. We also discuss the possible mechanisms by which PS exposure can define Leishmania survival inside host cells and the evolutionary implications of apoptosis at the unicellular level.
Resumo:
Renal involvement in visceral leishmaniasis (VL) is very frequent but the pathogenesis of this nephropathy is poorly understood. In previous studies using dogs with VL we have detected new immunopathological elements in the glomeruli such as T cells and adhesion molecules. Although Leishmania (Leishmania) chagasi-infected dogs and hamsters are considered to be good models for VL, their use is limited for immunopathologic studies. The use of isogenic mouse strains susceptible to L. (L.) chagasi infection was an alternative but, on the other hand, the renal lesions of these animals have not yet been characterized. Thus, our purpose in the present study was to characterize mice infected with L. (L.) chagasi as a suitable model to study VL nephropathy. Kidney samples were obtained from control mice (N = 12) and from BALB/c mice (N = 24) injected intraperitoneally with 20 million L. (L.) chagasi amastigotes 7, 15, and 30 days after injection and processed for histopathological studies and detection of IgG deposits. Glomerular hypercellularity was clearly visible and, upon Mason's trichrome and periodic acid methenamine silver staining, a pattern suggestive of mesangial proliferative glomerulonephritis was observed in mice with VL. Time-dependent IgG deposits were also seen in infected mice. We consider L. (L.) chagasi-infected mice to be a suitable model for studies of the immunopathogenesis of glomerular lesions in VL.
Resumo:
Fifteen symptomatic and seven asymptomatic dogs infected naturally with Leishmania chagasi were examined in order to identify the presence of parasites and changes in heart and lung. Histopathological, cytological, and immunohistochemical analyses were performed on samples of heart and lung tissues. An inflammatory reaction characterized by inflammatory mononuclear, perivascular and intermuscular infiltrates was observed in both symptomatic and asymptomatic animals on histopathological analysis of the heart. In the lung, there was thickening of the alveolar septa due to congestion, edema, inflammatory infiltrate, and fibroblast proliferation. A focal reaction was observed although a diffuse reaction was present in both groups. On cytological examination, heart and lung imprints revealed amastigotes in two symptomatic animals and heart imprints were found in 1 asymptomatic dog. Immunoperoxidase staining showed amastigotes in the lung and heart of only 1 of 6 symptomatic animals examined. Within the ethical principles and limits of this research, it can be inferred that the study of heart and lung alterations in canine visceral leishmaniasis is increasingly important for understanding the problem related to humans. Dogs with visceral leishmaniasis were a good experimental model, since infection was caused by the same agent and the animals developed clinical, pathological and immunological alterations similar to those observed in humans.
Resumo:
We have described a case of a patient with an intriguing association of mucocutaneous leishmaniasis with lepromatous leprosy, two opposite polar forms of these spectral diseases. In the present follow-up study, we investigated the effect of the addition of Mycobacterium leprae antigens on interferon-gamma (IFN-γ) production in Leishmania antigen-stimulated cultures of peripheral blood mononuclear cells (PBMC) from this patient. For this purpose, PBMC cultures were stimulated with crude L. braziliensis and/or M. leprae whole-cell antigen extracts or with concanavalin A. In some experiments, neutralizing anti-human interleukin (IL)-10 antibodies were added to the cultures. IFN-γ and IL-10 levels in culture supernatants were measured by ELISA. During active leprosy, M. leprae antigens induced 72.3% suppression of the IFN-γ response to L. braziliensis antigen, and this suppression was abolished by IL-10 neutralization. Interestingly, the suppressive effect of M. leprae antigen was lost after the cure of leprosy and the disappearance of this effect was accompanied by exacerbation of mucosal leishmaniasis. Considered together, these results provide evidence that the concomitant lepromatous leprosy induced an IL-10-mediated regulatory response that controlled the immunopathology of mucosal leishmaniasis, demonstrating that, in the context of this coinfection, the specific immune response to one pathogen can influence the immune response to the other pathogen and the clinical course of the disease caused by it. Our findings may contribute to a better understanding of the Leishmania/M. leprae coinfection and of the immunopathogenesis of mucosal leishmaniasis.