518 resultados para Cerrado soil
Resumo:
One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.
Resumo:
Studies have proven that the agroforestry systems in the semi-arid region of the State of Ceará, Brazil, induce an increase in soil organic C levels. Notwithstanding, there is no information if this increase also results in qualitative changes in different pools of soil organic matter. The objective of this study was to verify the possible chemical and structural alterations in fulvic and humic acids of a Luvisol in areas adopting agroforestry, traditional intensive cultivation and native forest in a long-term experiment conducted in the semi-arid region of Ceará State, Brazil. The study was conducted in an experimental area of the National Goat Research Center (Embrapa) in Sobral, CE. The following treatments were evaluated: agrosilvopasture (AGP), silvopasture (SILV), intensive cultivation under fallow (ICF), and areas with native forest (NF). Soil fulvic and humic acids fractions were extracted from the 0-6 and 6-12 cm layers and characterized by elemental composition, thermogravimetry and infrared spectroscopy analyses. The elemental composition analysis of humic acids confirmed the data found for fulvic acids, showing reduction in the C, H and N levels, followed by an increase in O contents in the AGP and ICF treatments over SILV and NF. In all treatments, except to SILV in the 0-6 cm layer, the percentage of mass loss was highest (300-600 °C) for humic acids in the thermally most stable region. Despite the similarity between infrared spectra, soil fulvic acids in the SILV treatment extracted from 6-12 cm depth decrease the absorption bands at 1708 and 1408 cm-1 followed by an increase in the absorption band at 1608 cm-1 attributed to aromatic C=C groups. This behavior suggests an increase in the aromatic character of the structure. The AGP and ICF treatments, which increase the soil tilling, favored the maintenance of humic substances with a more aromatic character in the soil than SILV and NF. The less aromatic humic substances in the SILV treatment resulted in an increase of exchange sites of soil organic matter, indicating improved nutrient cycling and maintenance of productivity in the system.
Resumo:
In agricultural systems the N-NH4+ and N-NO3- contents is significantly affected by soil management. This study investigated the dynamics of inorganic nitrogen (N; NH4+ and NO3-) in an experimental evaluation of soil management systems (SMSs) adopted in 1988 at the experimental station of the ABC Foundation in Ponta Grossa, in the Central South region of the State of Paraná. The objective of this study was to evaluate the changes in N-NH4+ and N-NO3- flux in the surface layer of a Red Latosol arising from SMSs over a 12-month period. The experiment was arranged in a completely randomized block design in split plots, in three replications. The plots consisted of the following SMSs: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, the subplots represented samplings (11 sampling times, T1 - T11). The ammonium N (N-NH4+) and nitric N (N-NO3-) contents were higher in systems with reduced tillage (MT and NT CH) and without tillage (CNT) than in the CT system. In the period from October 2003 to February 2004, the N-NH4+ was higher than the N-NO3- soil content. Conversely, in the period from May 2004 to July 2004, the N-NO3- was higher than the N-NH4+ content. The greatest fluctuation in the N-NH4+ and N-NO3- contents occurred in the 0-2.5 cm layer, and the highest peak in the N-NH4+ and N-NO3- concentrations occurred after the surface application of N. Both N-NH4+ and N-NO3- were strongly correlated with the soil organic C content, which indicated that these properties vary together in the system.
Resumo:
Nitrogen is the main limiting factor in crop productivity and thereby soil management systems may change the mineralization and nitrification rates. In an experiment on soil management systems implemented in 1988 at the experimental station Fundação ABC, Ponta Grossa, in the central South region of the State of Paraná, inorganic N dynamics were examined to find a soil management strategy with a view to a sustainable environment. The objective of this study was to calculate the net mineralization and nitrification rates of soil N and the correlation with soil pH under management systems. Randomized complete block design was used, in split plots, in three replications. The following soil management systems (SMSs) were adopted in the plots: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, samples were collected from sub-plots at different times (11 sampling times - T1 to T11). In the CNT and NT CH, the net mineralization rates were higher in the MT and CT systems in the 0-2.5 cm soil layer, while the nitrification rate was higher in the 2.5-5 cm layer. Soon after implementing the white oat management, the mineralization and nitrification rates in all soil layers were higher in the MT and CT systems. In the period of soybean development, in the 0-2.5 and 2.5-5 cm soil layers, the mineralization and nitrification rates were higher in the CNT and NT CH than in the MT and CT systems.
Resumo:
Nitrification can lead to substantial losses of the applied N through nitrate leaching and N2O emission. The regulation of nitrification may be a strategy to improve fertilizer N recovery and increase its agronomic efficiency. The objective of this study was to evaluate the inhibiting capacity of nitrification in soil by Brachiaria species. The greenhouse experiment was conducted using pots with 10 dm³ of a Red Latosol sample. The treatments consisted of the cultivation of three forage species (Brachiaria brizantha, B. ruziziensis and B. decumbens) and four n rates (0, 100, 200, and 300 mg/pot), and the control (without plants). In the absence of the forage plants, all N fertilization levels raised the N-NO3- soil levels, as a result of nitrification. The mineralization of organic matter supplied much of the N requirement of the forage plants and nitrification was influenced in the rhizosphere of B. brizantha; however, this effect was not high enough to alter the N-NH4+ level in the total soil volume of the pot.
Resumo:
Despite the efficiency of the Shoemaker, McLean, Pratt (SMP) buffer method in estimating soil acidity, the presence of p-nitrophenol and potassium chromate in the solution, both hazardous substances, has caused increasing environmental concerns. The purpose of this study was to test Sikora method (Sikora, 2006) as an alternative to the adapted SMP buffer method, generally used to estimate potential acidity of Southern Brazilian soils. For the test, 21 soils in the South and Cerrado regions of Brazil were sampled. (1) The potential acidity values of these soils range from 35.95 to 4.02 cmol c kg-1 of soil, reflecting a wide acidity variation. The Sikora buffer does not mimic the adapted SMP buffer used in Southern Brazil, since the former has a low ability to distinguish soils with different acidity from each other, probably due to the higher buffer capacity than of the adapted SMP solution.
Resumo:
Pig slurry application as soil manure can alter the chemical properties of the soil and affect its acidity, modifying the environment for crop growth and development. The objective of this study was to evaluate the chemical properties related to soil acidity subjected to successive applications of pig slurry. The experiment was conducted in May 2000, in an experimental area of the Federal University of Santa Maria (UFSM) under no-tillage and lasted until January 2008. Nineteen surface applications of 0, 20, 40, and 80 m³ ha-1 of pig slurry were performed, during a period of 100 months and the soil sampled in the end (layers 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-18, 18-20, 20-25, 25-30, 30-35, 35-40, 40-50 and 50-60 cm). The application of pig slurry increased soil pH values, an effect that could reach the depth of 8 cm without affecting the potential acidity values. The applications also resulted in accumulation of Ca and Mg exchangeable levels in the surface layers, increasing base saturation and reducing Al saturation. Long-term applications induced an increase in organic matter in the deeper layers. However, the effect of this residue on the potential CEC was less significant and restricted to the surface layers.
Resumo:
To mitigate soil erosion and enhance soil fertility in orange plantations, the permanent protection of the inter-rows by cover species has been suggested. The objective of this study was to evaluate alterations in the microbial biomass, due to different soil tillage systems and intercropped cover species between rows of orange trees. The soil of the experimental area previously used as pasture (Brachiaria humidicola) was an Ultisol (Typic Paleudult) originating from Caiuá sandstone in the northwestern part of the State of Paraná, Brazil. Two soil tillage systems were evaluated: conventional tillage (CT) in the entire area and strip tillage (ST) (strip width 2 m), in combination with different ground cover management systems. The citrus cultivar 'Pera' orange (Citrus sinensis) grafted onto 'Rangpur' lime rootstock was used. Soil samples were collected after five years of treatment from a depth of 0-15 cm, under the tree canopy and in the inter-row, in the following treatments: (1) CT and an annual cover crop with the leguminous species Calopogonium mucunoides; (2) CT and a perennial cover crop with the leguminous peanut Arachis pintoi; (3) CT and an evergreen cover crop with Bahiagrass Paspalum notatum; (4) CT and a cover crop with spontaneous Brachiaria humidicola grass vegetation; and (5) ST and maintenance of the remaining grass (pasture) of Brachiaria humidicola. Soil tillage and the different cover species influenced the microbial biomass, both under the tree canopy and in the inter-row. The cultivation of brachiaria increased C and N in the microbial biomass, while bahiagrass increased P in the microbial biomass. The soil microbial biomass was enriched in N and P by the presence of ground cover species and according to the soil P content. The grass species increased C, N and P in the soil microbial biomass from the inter-row more than leguminous species.
Resumo:
The modeling and estimation of the parameters that define the spatial dependence structure of a regionalized variable by geostatistical methods are fundamental, since these parameters, underlying the kriging of unsampled points, allow the construction of thematic maps. One or more atypical observations in the sample data can affect the estimation of these parameters. Thus, the assessment of the combined influence of these observations by the analysis of Local Influence is essential. The purpose of this paper was to propose local influence analysis methods for the regionalized variable, given that it has n-variate Student's t-distribution, and compare it with the analysis of local influence when the same regionalized variable has n-variate normal distribution. These local influence analysis methods were applied to soil physical properties and soybean yield data of an experiment carried out in a 56.68 ha commercial field in western Paraná, Brazil. Results showed that influential values are efficiently determined with n-variate Student's t-distribution.
Resumo:
Soil compaction can be minimized either mechanically or biologically, using plant species with vigorous root systems. An experiment was carried out with soybean (Glycine max) in rotation with triticale (X Triticosecale) and sunflower (Helianthus annuus) in fall-winter associated with pearl millet (Pennisetum glaucum), grain sorghum (Sorghum bicolor) or sunn hemp (Crotalaria juncea) in spring. Crop rotation under no-till was compared with mechanical chiseling. The experiment was carried out in Botucatu, São Paulo State, Brazil. Soil quality was estimated using the S index and soil water retention curves (in the layers of 0-0.05, 0.075-0.125, 0.15-0.20, 0.275-0.325, and 0.475-0.525 m deep). Crop rotation and chiseling improved soil quality, increasing the S index to over 0.035 to a depth of 20 cm in the soil profile. The improved soil quality, as shown by the S index, makes the use of mechanical chiseling unnecessary, since after 3 years the soil physical quality under no-tilled crop rotation and chiseling was similar.
Resumo:
One of the expected benefits of no-tillage systems is a higher rate of soil C sequestration. However, higher C retention in soil is not always apparent when no-tillage is applied, due e.g., to substantial differences in soil type and initial C content. The main purpose of this study was to evaluate the potential of no-tillage management to increase the stock of total organic C in soils of the Pampas region in Argentina. Forty crop fields under no-tillage and conventional tillage systems and seven undisturbed soils were sampled. Total organic C, total N, their fractions and stratification ratios and the C storage capacity of the soils under different managements were assessed in samples to a depth of 30 cm, in three layers (0-5, 5-15 and 15-30 cm). The differences between the C pools of the undisturbed and cultivated soils were significant (p < 0.05) and most pronounced in the top (0-5 cm) soil layer, with more active C near the soil surface (undisturbed > no-tillage > conventional tillage). Based on the stratification ratio of the labile C pool (0-5/5-15 cm), the untilled were separated from conventionally tilled areas. Much of the variation in potentially mineralizable C was explained by this active C fraction (R² = 0.61) and by total organic C (R² = 0.67). No-till soils did not accumulate more organic C than conventionally tilled soils in the 0-30 cm layer, but there was substantial stratification of total and active C pools at no till sites. If the C stratification ratio is really an indicator of soil quality, then the C storage potential of no-tillage would be greater than in conventional tillage, at least in the surface layers. Particulate organic C and potentially mineralizable C may be useful to evaluate variations in topsoil organic matter.
Resumo:
O estudo da distribuição de Se em solos é de extremo interesse devido à estreita faixa entre níveis de deficiência e toxidez. A espécie química de Se com maior potencial toxicológico é o ânion selenato, em razão de sua alta mobilidade em solos, sendo assim de grande importância a compreensão de seu comportamento em solos tropicais. Foi realizado um experimento de adsorção, utilizando-se 2 g de solo em 20 mL de solução, contendo dez diferentes concentrações de Se na forma de Na2SeO4, com tempo de agitação de 24 h, em solução eletrolítica de NaNO3 0,03 mol L-1. Para estudar o efeito do tempo na adsorção, realizou-se um experimento nas mesmas condições das do ensaio de adsorção, porém foi utilizada somente a concentração de 1 mg L-1 Se, variando o tempo de agitação de 15 min a 72 h. A isoterma de adsorção de Freundlich foi a de melhor ajuste aos dados experimentais. Para o estudo cinético, o melhor modelo foi o de pseudossegunda ordem, e o tempo necessário para a adsorção do Se atingir o equilíbrio foi de aproximadamente 4 h. De modo geral, os valores obtidos para Kd foram baixos; assim, conclui-se que o Se tende a ficar mais em solução do que retido nas partículas do solo. Portanto, os solos mais intemperizados, gibbsíticos e goethíticos e com maior conteúdo de argila foram os que tiveram maior afinidade pelo selênio. Nos solos com textura média ou arenosa, esse elemento tende a ser menos retido, razão pela qual pode ser absorvido pelas plantas ou ser facilmente lixiviado, podendo causar malefícios ao ecossistema.
Resumo:
The greatest limitation to the sustainability of no-till systems in Cerrado environments is the low quantity and rapid decomposition of straw left on the soil surface between fall and spring, due to water deficit and high temperatures. In the 2008/2009 growing season, in an area under center pivot irrigation in Selvíria, State of Mato Grosso do Sul, Brazil, this study evaluated the lignin/total N ratio of grass dry matter , and N, P and K deposition on the soil surface and decomposition of straw of Panicum maximum cv. Tanzânia, P. maximum cv. Mombaça, Brachiaria. brizantha cv. Marandu and B. ruziziensis, and the influence of N fertilization in winter/spring grown intercropped with maize, on a dystroferric Red Latosol (Oxisol). The experiment was arranged in a randomized block design in split-plots; the plots were represented by eight maize intercropping systems with grasses (sown together with maize or at the time of N side dressing). Subplots consisted of N rates (0, 200, 400 and 800 kg ha-1 year-1) sidedressed as urea (rates split in four applications at harvests in winter/spring), as well as evaluation of the straw decomposition time by the litter bag method (15, 30, 60, 90, 120, and 180 days after straw chopping). Nitrogen fertilization in winter/spring of P. maximum cv. Tanzânia, P. maximum cv. Mombaça, B. brizantha cv. Marandu and B. ruziziensis after intercropping with irrigated maize in an integrated crop-livestock system under no-tillage proved to be a technically feasible alternative to increase the input of straw and N, P and K left on the soil surface, required for the sustainability of the system, since the low lignin/N ratio of straw combined with high temperatures accelerated straw decomposition, reaching approximately 30 % of the initial amount, 90 days after straw chopping.
Resumo:
The use of organic-mineral fertilizer produced by the manufacturing industry of lysine and threonine amino acids can improve the fertility of tropical soils. The objective of this study was to evaluate the influence of different doses of the organic-mineral fertilizer named Ajifer L-14 on chemical properties and on the response with increased production of a forage on a Red Latosol in the northwestern region of São Paulo State, Brazil. A randomized block design was used with seven treatments and four replications. The treatments consisted of: T1- control (without application of Ajifer L-14); T2- control (natural vegetation); T3- mineral fertilization according to crop requirements and soil analysis (application of 1.35 kg plot-1 of urea, 2.20 single superphosphate, and 0.51 KCl, corresponding to 60 of N, 40 P2O5 and 30 kg ha-1 of K2O); T4- fertilization with Ajifer L-14 according to the recommendation resulting from the soil chemical analysis (40 L plot-1, corresponding to 60 kg ha-1 N); T5- fertilization with Ajifer L-14, at a rate of 150 % of the recommended values (60 L plot-1, corresponding to 90 kg ha-1 N); T6- fertilization with Ajifer L-14 at a rate of 50 % of the recommended values (20 L plot-1, corresponding to 30 kg ha-1 N); T7- fertilization with Ajifer L-14 at a rate of 125 % of the recommended values (50 L plot-1, corresponding to 75 kg ha-1 N); T8- fertilization with Ajifer L-14 at a rate of 75 % of the recommended values (30 L plot-1, corresponding to 45 kg ha-1 N). The following soil chemical properties were evaluated (layers 0.0-0.1 and 0.1-0.2 m): P, organic matter, pH, K+, Ca2+, Mg2+, cation exchange capacity, potential acidity, and base saturation. The application of this organic-mineral fertilizer does not influence the soil chemical properties. Regression analysis indicated a polynomial relationship between the application rates of organic-mineral fertilizer and the production of dry matter and crude protein of Bracharia Brizantha.
Resumo:
Because of the climate changes occurring across the planet, especially global warming, the different forms of agricultural soil use have attracted researchers´ attention. Changes in soil management may influence soil respiration and, consequently, C sequestration. The objectives of this study were to evaluate the long-term influence of liming on soil respiration and correlate it with soil chemical properties after two years of liming in a no-tillage system. A randomized complete block design was used with six replications. The experimental treatments consisted of four lime rates and a control treatment without lime. Two years after liming, soil CO2 emission was measured and the soil sampled (layers 0-5, 5-10, 10-20, and 20-30 cm). The P, Ca2+ e Mg2+ soil contents and pH and base saturation were determined. CO2 emission from soil limed at the recommended rate was 24.1 % higher, and at twice the recommended rate, 47.4 % higher than from unlimed soil. Liming improved the chemical properties, and the linear increase in soil respiration rate correlated positively with the P, Ca2+ and Mg2+ soil contents, pH and base saturation, and negatively with H + Al and Al3+ contents. The correlation coefficient between soil respiration rate and chemical properties was highest in the 10-20 cm layer.