425 resultados para Marcia Colish
Resumo:
We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method.
Resumo:
The main objective of this work is to develop an efficient procedure to determine glyphosate in soybean grains. The cleanup of the aqueous extracts was done in two steps, beginning with liquid-liquid partitioning and then solid-phase extraction with anion exchange resin. After derivatization with a mixture of trifluoroacetic anhydride (TFAA) and trifluoroethanol (TFE), quantification was done by gas chromatography coupled to mass spectrometry. The mean recovery and RSD of the spiked samples were, respectively, 80.5% and 3.1% at level 0.200 mg kg-1, 93.3% and 18.7% at level 0.500 mg kg-1 and 92% and 3.5% at level 1.000 mg kg-1. The method was linear in the working range (correlation coefficient = 0.9965).
Resumo:
The alternative system VO(acac)2/TBHP was investigated for the epoxidation reaction of castor oil and its derivatives. Results of 88% of conversion, 73% of epoxidation and 82% of selectivity were obtained for the system containing 20% excess of TBHP and 1% of VO(acac)2 catalyst, during 3 h under toluene reflux. The product was characterized by GC/MS as methyl-cis-9, 10-epoxi, 12-hydroxystearate and quantitative ¹H NMR was used to calculate the data above. Preliminary results indicate that the heterogeneous system VO(acac)2 grafted on K10 clay can also promote epoxidation of castor oil.
Resumo:
The increasing demand for fatty acid-free lecithin required modifications in existing purification methods. In this technical note we describe a purification procedure with the following steps: a) homogenization and extraction of yolks obtained from fresh eggs with acetone, b) solubilization with ethanol and solvent elimination and c) repeated solubilization/precipitation with petroleum ether/acetone. This crude extract was chromatographed on neutral alumina, which was exhaustively washed with chloroform before elution with chloroform:methanol, allowing the sequential separation of fatty acids and lecithin. Chromatographic behavior and mass spectra of the product are presented. This fast procedure yields fatty acid-free lecithin at a competitive cost.
Resumo:
The influence of drug concentration, oil phase, and surfactants on the characteristics of dexamethasone-loaded nanocapsules was investigated. The best formulations were obtained at dexamethasone concentrations of 0.25 and 0.50 mg.mL-1 (encapsulation efficiency: 80-90%; mean size: 189-253 nm). The type of oil phase influenced only the stability of dexamethasone-loaded nanocapsules. The association of polysorbate 80 and sorbitan monooleate provided a more stable formulation. Sunflower oil and sorbitan sesquioleate used for the first time as oil phase and surfactant for nanocapsules, respectively, have allowed obtaining suspensions with low mean size and narrow size distribution.
Resumo:
Non-polluting polyurethane aqueous dispersions, with 40% of solids content, were synthesized based on block copolymers of poly(ethylene glycol) and poly(propylene glycol) (PEG-b-PPG), with PEG hydrophilic segments content of 7 and 25%, poly(propylene glycol) (PPG), dimethylolpropionic acid (DMPA), isophorone diisocyanate (IPDI), and hydrazine. Different formulations were synthesized by varying the equivalent-grams ratios between isocyanate and hydroxyl groups (NCO/OH) and PPG and (PEG-b-PPG). The presence of high amounts of PEG in the formulations provoked the formation of gels. Average particle size and viscosity of the dispersions were determined. Mechanical properties and water absorption resistance of cast films were evaluated.
Resumo:
The volatile compounds of raw and extruded bovine rumen, extracted by dynamic headspace, were separated by gas chromatography and analyzed by GC-MS. Raw and extruded materials presented thirty-two volatile compounds. The following compounds were identified in raw bovine rumen: heptane, 1-heptene, 4-methyl-2-pentanone, toluene, hexanal, ethyl butyrate, o-xylene, m-xylene, p-xylene, heptanal, limonene, nonanal, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane and octadecane. The following compounds were identified in the extruded material: 1-heptene, 2,4-dimethylhexane, toluene, limonene, undecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane and nonadecane. Mass spectra of some unidentified compounds indicated the presence of hydrocarbons with branched chains or cyclic structure.
Resumo:
This paper reports the use of Raman and infrared techniques for the qualitative and quantitative analysis of plasticizers in polyvinylchloride (PVC) commercial films. FT-Raman marker bands were indentified for di-2-ethyl-hexyl adipate (DEHA) and di-2-ethyl-hexyl phthalate (DEHP), allowing for the rapid identification of these species in the commercial film. Quantitative analysis by FT-IR resulted in plasticizers concentrations ranging from 11 to 27% (w/w). Considering the little sample preparation and the low cost of the techniques, FT-IR and FT-Raman are viable techniques for a first assessment of plasticizers in commercial samples.
Resumo:
This review deals with silica based hybrid materials obtained by the sol-gel method. It involves concepts, classifications and important definitions regarding the sol-gel method that allows obtaining materials with organic and inorganic components dispersed in a molecular or nanometric level. We discuss the properties and characteristics of hybrid materials related to experimental synthesis conditions. We devote a special attention to the nanostructured materials, where the self-organization is imposed by the organic component. Finally, we present some important applications of these materials based on their specific properties.
Resumo:
In this work a new experiment using HPLC is proposed in order to explore the role of acidity and the organic modifiers in the determination of methylxanthines in tea and coffee. Multivariate and univariate optimizations of the experimental conditions were used.
Resumo:
This work reports on the SERS activity of a nanostructured substrate that was obtained by electrodepositing gold over a template consisting of polystyrene microspheres. This substrate displayed superior SERS performance for the detection of 4-merctaptopyridine as compared to a conventional roughened Au electrode. In order to investigate the substrate capability for the detection at low concentration limits, a series of Rhodamine 6G (1 nM) spectra were registered. Our spectral dynamics data is in agreement with single-molecule behavior, showing that the control over the substrate morphology is crucial to enable the production of highly reproducible and sensitive SERS substrates.
Resumo:
Leaves and flower heads of P. brevipedunculata were submitted to four drying-air temperatures (room temperature, 40, 50 and 60 ºC). Room temperature (approximately 30 ºC) and higher temperature drying (50 and 60 ºC) had a deleterious effect on the essential oil content. The recommended drying-air temperature for the species is 40 ºC for it results in the same amount of essential oil observed in fresh cut plants. Overall, 13 components accounting for more than 92% of the total composition were identified. Citral was the major component, followed by α-pinene and limonene. The essential oil showed high toxicity against Artemia salina larvae.
Resumo:
Nanocomposite materials have been incorporated into biopolymers, (e.g. hydroxypropyl methylcellulose), to improve their physical and chemical properties and enable them to be applied in food packaging, especially for their biodegradable and renewable properties. With this addition, fruit puree has been incorporated into the films to confer nutritional properties besides color and flavor. Chitosan is of interest in the packaging field since it is a biodegradable, bioabsorbable, antimicrobial agent. Furthermore, chitosan nanoparticles have been widely explored for their interesting properties and potential applications in food packaging. This work was divided into two stages: (1) chitosan nanoparticle synthesis; (2) addition of nanoparticles into HPMC and papaya puree films. Addition of chitosan nanoparticles to HPMC and papaya puree films improved film properties: mechanical, thermal and water vapor barrier. We have developed a novel nanomaterial with great potential for application in packaging to prolong the shelf life of food.
Resumo:
A method based on microwave-induced combustion (MIC) was applied for the decomposition of different types of edible seaweed (Nori, Hijiki and Wakame) for subsequent determination of bromine and iodine by inductively coupled plasma mass spectrometry (ICP-MS). Decomposition of 500 mg of each sample was achieved in less than 30 min. A single and diluted solution (150 mmol L-1 (NH4)2CO3) was used for the absorption of both analytes and a reflux step of 5 min was applied to improve analyte recoveries. Accuracy was evaluated using certified reference materials and agreement was between 103 and 108% for both elements.
Resumo:
In this work, a novel device based on polyacrylamide (PAAm) hydrogels and KL - DeOH - H2O lyotropic liquid crystal (LLC), with potential for application as Polymer Dispersed Liquid Crystals (PDLC), was proposed and its properties characterized. The confinement of LLC promoted significant changes in spectroscopic, morphological, optical, hydrophilic, structural and mechanical properties due to the interaction between the LLC-PAAm matrix and entropic parameter changes. The mechanical and structural properties can be controlled by adjusting AAm, temperature and presence of LLC, which can be useful for technological applications of these systems in optical devices.