416 resultados para Dengue - Prevenção
Resumo:
Brevidensoviruses have an encapsidated, single-stranded DNA genome that predominantly has a negative polarity. In recent years, they have received particular attention due to their potential role in the biological control of pathogenic arboviruses and to their unnoticed presence in cell cultures as contaminants. In addition, brevidensoviruses may also be useful as viral vectors. This study describes the first genetic and biological characterization of a mosquito densovirus that was isolated in Brazil; moreover, we examined the phylogenetic relationship between this isolate and the other brevidensoviruses. We further demonstrate that this densovirus has the potential to be used to biologically control dengue virus (DENV) infection with in vitro co-infection experiments. The present study provides evidence that this densovirus isolate is a fast-spreading virus that affects cell growth and DENV infection.
Resumo:
In French Guiana, pyrethroids and organophosphates have been used for many years against Aedes aegypti. We aimed to establish both the resistance level of Ae. aegypti and the ultra low volume spray efficacy to provide mosquito control services with practical information to implement vector control and resistance management. Resistance to deltamethrin and fenitrothion was observed. In addition, the profound loss of efficacy of AquaK'othrine® and the moderate loss of efficacy of Paluthion® 500 were recorded. Fenitrothion remained the most effective candidate for spatial application in French Guiana until its removal in December 2010. Further investigation of the mechanism of resistance to deltamethrin demonstrated the involvement of mixed-function oxidases and, to a lesser extent, of carboxylesterases. However, these observations alone cannot explain the level of insecticide resistance we observed during tube and cage tests.
Resumo:
We assessed the risk classification of dengue fever based on the capture of Aedes aegypti adults using MosquiTRAP, a type of sticky trap, in comparison with traditional larval infestation indices. A total of 27 MosquiTRAPs were installed, with one trap per block, and were inspected weekly between November 2008-February 2009. Infestation baseline data were obtained from a survey conducted prior to trap installation. The index generated by MosquiTRAP and house index (HI) classified the area "in alert situation". The set for risk of dengue occurrence proposed by the use of MosquiTRAP classify areas in the same way of the traditional HI.
Resumo:
Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.
Resumo:
Recently, we showed that infection with dengue virus increases the locomotor activity of Aedes aegypti females. We speculate that the observed increased locomotor activity could potentially increase the chances of finding a suitable host and, as a consequence, the relative biting rate of infected mosquitoes. We used a mathematical model to investigate the impact of the increased locomotor activity by assuming that this activity translated into an increased biting rate for infected mosquitoes. The results show that the increased biting rate resulted in dengue outbreaks with greater numbers of primary and secondary infections and with more severe biennial epidemics.
Resumo:
Dengue virus (DENV) and parvovirus B19 (B19V) infections are acute exanthematic febrile illnesses that are not easily differentiated on clinical grounds and affect the paediatric population. Patients with these acute exanthematic diseases were studied. Fever was more frequent in DENV than in B19V-infected patients. Arthritis/arthralgias with DENV infection were shown to be significantly more frequent in adults than in children. The circulating levels of interleukin (IL)-1 receptor antagonist (Ra), CXCL10/inducible protein-10 (IP-10), CCL4/macrophage inflammatory protein-1 beta and CCL2/monocyte chemotactic protein-1 (MCP-1) were determined by multiplex immunoassay in serum samples obtained from B19V (37) and DENV-infected (36) patients and from healthy individuals (7). Forward stepwise logistic regression analysis revealed that circulating CXCL10/IP-10 tends to be associated with DENV infection and that IL-1Ra was significantly associated with DENV infection. Similar analysis showed that circulating CCL2/MCP-1 tends to be associated with B19V infection. In dengue fever, increased circulating IL-1Ra may exert antipyretic actions in an effort to counteract the already increased concentrations of IL-1β, while CXCL10/IP-10 was confirmed as a strong pro-inflammatory marker. Recruitment of monocytes/macrophages and upregulation of the humoral immune response by CCL2/MCP-1 by B19V may be involved in the persistence of the infection. Children with B19V or DENV infections had levels of these cytokines similar to those of adult patients.
Resumo:
Severe forms of dengue, such as dengue haemorrhagic fever (DHF) and dengue shock syndrome, are examples of a complex pathogenic mechanism in which the virus, environment and host immune response interact. The influence of the host's genetic predisposition to susceptibility or resistance to infectious diseases has been evidenced in several studies. The association of the human leukocyte antigen gene (HLA) class I alleles with DHF susceptibility or resistance has been reported in ethnically and geographically distinct populations. Due to these ethnic and viral strain differences, associations occur in each population, independently with a specific allele, which most likely explains the associations of several alleles with DHF. As the potential role of HLA alleles in the progression of DHF in Brazilian patients remains unknown, we then identified HLA-A alleles in 67 patients with dengue fever and 42 with DHF from Rio de Janeiro, Brazil, selected from 2002-2008 by the sequence-based typing technique. Statistical analysis revealed an association between the HLA-A*01 allele and DHF [odds ratio (OR) = 2.7, p = 0.01], while analysis of the HLA-A*31 allele (OR = 0.5, p = 0.11) suggested a potential protective role in DHF that should be further investigated. This study provides evidence that HLA class I alleles might be important risk factors for DHF in Brazilian patients.
Resumo:
Dengue fever is the most important arbovirus infection found in tropical regions around the world. Dispersal of the vector and an increase in migratory flow between countries have led to large epidemics and severe clinical outcomes, such as dengue haemorrhagic fever and dengue shock syndrome. This study analysed the genetic variability of the dengue virus serotype 1 (DENV-1) in Brazil with regard to the full-length structural genes C/prM/M/E among 34 strains isolated during epidemics that occurred in the country between 1994-2011. Virus phylogeny and time of divergence were also evaluated with only the E gene of the strains isolated from 1994-2008. An analysis of amino acid differences between these strains and the French Guiana strain (FGA/89) revealed the presence of important nonsynonymous substitutions in the amino acid sequences, including residues E297 (Met→Thr) and E338 (Ser→Leu). A phylogenetic analysis of E proteins comparing the studied isolates and other strains selected from the GenBank database showed that the Brazilian DENV-1 strains since 1982 belonged to genotype V. This analysis also showed that different introductions of strains from the 1990s represented lineage replacement, with the identification of three lineages that cluster all isolates from the Americas. An analysis of the divergence time of DENV-1 indicated that the lineage circulating in Brazil emerged from an ancestral lineage that originated approximately 44.35 years ago.
Resumo:
In Niterói, state of Rio de Janeiro, dengue virus type 4 (DENV-4) was isolated for the first time in March 2011. We analysed the laboratory findings of the first cases and evaluated the use of molecular techniques for the detection of DENV-4 in Aedes aegypti that were field-caught. Conventional reverse transcriptase-polymerase chain reaction (RT-PCR) and SimplexaTM Dengue real-time RT-PCR confirmed DENV-4 infection in all cases. Additionally, DENV-4 was confirmed in a female Ae. aegypti with 1.08 x 10³ copies/mL of virus, as determined by quantitative real-time RT-PCR. This is the first time the SimplexaTM Dengue real-time assay has been used for the classification of cases of infection and for entomological investigations. The use of these molecular techniques was shown to be important for the surveillance of dengue in humans and vectors.
Resumo:
Because an enriched environment (EE) enhances T-cell activity and T-lymphocytes contribute to immunopathogenesis during heterologous dengue virus (DENV) infections, we hypothesised that an EE increases dengue severity. To compare single serotype (SS) and antibody-enhanced disease (AED) infections regimens, serial intraperitoneal were performed with DENV3 (genotype III) infected brain homogenate or anti-DENV2 hyperimmune serum followed 24 h later by DENV3 (genotype III) infected brain homogenate. Compared AED for which significant differences were detected between the EE and impoverished environmental (IE) groups (Kaplan-Meyer log-rank test, p = 0.0025), no significant differences were detected between the SS experimental groups (Kaplan-Meyer log-rank test, p = 0.089). Survival curves from EE and IE animals infected with the AED regimen were extended after corticoid injection and this effect was greater in the EE than in the IE group (Kaplan-Meyer log-rank test, p = 0.0162). Under the AED regimen the EE group showed more intense clinical signs than the IE group. Dyspnoea, tremor, hunched posture, ruffled fur, immobility, pre-terminal paralysis, shock and death were associated with dominant T-lymphocytic hyperplasia and presence of viral antigens in the liver and lungs. We propose that the increased expansion of these memory T-cells and serotype cross-reactive antibodies facilitates the infection of these cells by DENV and that these events correlate with disease severity in an EE.
Resumo:
We argue that using more natural blood feeding methods to study mosquito vector competence for dengue viruses and exploring the effect of viral infection on other mosquito life-history traits that influence vectorial capacity will significantly advance our understanding of dengue epidemiology.
Resumo:
Dengue is the most important arboviral disease in the world. As chloroquine, an antimalarial agent, has shown some antiviral effects, this study evaluated its effect in patients with dengue. A randomised, double-blind study was performed by administering chloroquine or placebo for three days to 129 patients with dengue-related symptoms. Of these patients, 37 were confirmed as having dengue and completed the study; in total, 19 dengue patients received chloroquine and 18 received placebo. There was no significant difference in the duration of the disease or the degree and days of fever. However, 12 patients (63%) with confirmed dengue reported a substantial decrease in pain intensity and a great improvement in their ability to perform daily activities (p = 0.0004) while on the medication and the symptoms returned immediately after these patients stopped taking the medication. The same effect was not observed in patients with diseases other than dengue. Therefore, this study shows that patients with dengue treated with chloroquine had an improvement in their quality of life and were able to resume their daily activities. However, as chloroquine did not alter the duration of the disease or the intensity and days of fever, further studies are necessary to confirm the clinical effects and to assess the side effects of chloroquine in dengue patients.
Resumo:
Currently, several assays can confirm acute dengue infection at the point-of-care. However, none of these assays can predict the severity of the disease symptoms. A prognosis test that predicts the likelihood of a dengue patient to develop a severe form of the disease could permit more efficient patient triage and treatment. We hypothesise that mRNA expression of apoptosis and innate immune response-related genes will be differentially regulated during the early stages of dengue and might predict the clinical outcome. Aiming to identify biomarkers for dengue prognosis, we extracted mRNA from the peripheral blood mononuclear cells of mild and severe dengue patients during the febrile stage of the disease to measure the expression levels of selected genes by quantitative polymerase chain reaction. The selected candidate biomarkers were previously identified by our group as differentially expressed in microarray studies. We verified that the mRNA coding for CFD, MAGED1, PSMB9, PRDX4 and FCGR3B were differentially expressed between patients who developed clinical symptoms associated with the mild type of dengue and patients who showed clinical symptoms associated with severe dengue. We suggest that this gene expression panel could putatively serve as biomarkers for the clinical prognosis of dengue haemorrhagic fever.