384 resultados para bean shoot borer
Resumo:
This study describes a simple and promising for in vitro multiplication of Tabernaemontana fuchsiaefolia, a species abundantly found in southern Brazil utilized for medicinal purposes and as a source of compounds that may be used to develop new synthetic drugs. Apical and hypocotyl explants were cultured in MS medium containing different concentrations of the cytokinins benzylaminopurine (BA) and 6-furfurylaminopurine (kinetin), supplemented with phloroglucinol (1, 3, 5-hydroxybenzene) to stimulate growth and shoot proliferation. Cytokinin added to the culture media positively influenced the micropropagation of T. fuchsiaefolia.and kinetin induced more shoots per explant than BA cytokinin. A favorable effect of phloroglucinol on apical and lateral buds from hypocotyls was also achieved in medium containing no kinetin or in all kinetin concentrations tested. Short pulses of auxin 3-indolebutyric acid (IBA) 5.0 mg/l resulted in satisfactory rooting in apical microcuttings. The addition of phloroglucinol to MS medium induced rhizogenesis in 29% of the nodal segments transferred to MS medium in the absence of IBA and in 50% of the nodal segments transferred to MS medium containing 0.5 mg/l IBA and in nodal segments previously submitted to short pulses of IBA.
Resumo:
In this study, I tested the efficacy of ants as secondary seed dispersers of Ricinus communis in southeastern Brazil. In a natural population of 143 individuals, I determined the ballistic dispersal distance for 62 seeds and 100 additional seeds were experimentally offered to ants in groups of ten seeds along a transect of 50 m. Fifty-three seeds were removed by ants, mainly by the leafcutter Atta sexdens (90.4%). The dispersal distance by ants was high, compared to the global average (4.38 m ± 0.74 m vs. 0.96 m), but was lower than the ballistic distance (7.27 m ± 0.13 m). Ants increased the total dispersal distance (8.66 m ± 0.60 m), but the main benefit for the plant was the directed dispersal, with seed deposition on the enriched soil of ant nests.
Resumo:
Some native species produce seeds with low germination percentage and in most cases with dormancy, which makes the appearance of new individuals by sexual propagation difficult. The Maclura tinctoria has been considered an endangered species due to the indiscriminate use of its wood and low rate of seed germination. In this context, the objective of the present study was to establish an in vitropropagation methodology for this species. Combinations of NAA + BAP, different concentrations of GA3 and combinations IBA + activated charcoal were evaluated for shoot induction, shoot growth and root formation, respectively. The results indicated that the maximum shoot formation was obtained when 5.37 µM NAA + 4.45 µM BAP was used. The use of 5.48 µM GA3 promoted shoot growth. Root formation was observed on explants inoculated in WPM with a pH adjusted to 7.0 and supplemented with 23.62 µM IBA + 4.7 g L-1 activated charcoal. The use of a 70% light screen for 7 days followed by the use of 50 and 30% light screens also for 7 days each provided 97% plantlet survival.
Resumo:
Ecophysiological studies under semi-controlled conditions in nurseries and greenhouses are essential to enable the use of native species to recover degraded areas and for commercial planting. Talisia subalbens (Mart) Radlk, 'cascudo', is a native fruiting species of the Cerrado on the verge of extinction. The ecophysiological performance of this species was evaluated in nursery conditions under different levels of shading (full sunshine, 30%, 50% and 70%). Initial growth, biomass allocation, gas exchange and chlorophyll content of the plants were analyzed. Full sunshine cultivated plants showed a higher accumulation of total, shoot, and root dry biomass. There was no significant difference in the root/shoot ratio among the treatments. Seedlings cultivated under full sunshine and 30% shading showed higher values for height, basal diameter, and leaf area. Differences in stomata conductance and photosynthesis rate were not observed among the different shading levels. Plants cultivated under 70% of shading had higher contents of chlorophyll a, b, and total. During the initial phase with higher levels of radiation were fundamental for the development of T. subalbens seedlings.
Resumo:
Fruits and almond from the dendezeiro, oil palmbelonging to the Elaeis genus,are widely used for the production of cookingoils or for the pharmaceutical and cosmetic industries.In the last decade, this oil palm also emerged as a promising source for commercialbiofuel production. This study evaluated the effect of different culture media, MS (MURASHIGUE AND SKOOG) and Y3 (EEUWENS)and carbohydrates duringin vitro germination of zygotic embryos, the effect of growth regulators GA3, NAA and BA Ponin vitro seedling development, and the survival rate of acclimatized seedlingsof Manicoré hybrid (Elaeis oleifera x E. guineensis). Zygotic embryos were inoculated on MS and modified Y3 media, supplemented with different sucrose concentrations (30, 45, and 60 gL-1) or sorbitol (36 gL-1), and the germination rate was evaluated after 30 days. Subsequently, seedlings were transferred to modified Y3 culture medium supplemented with differentGA3 concentrations (3.5 and 7 mgL-1) or without it, combined or not with 1 mgL-1 of NAA, 5 mgL-1 of BAP.The highest germinationpercentage of germinated embryos (92%) was observed in MS medium supplemented with 36 gL-1 sorbitol. Culture media supplemented with growth regulatorsGA3, NAA and BAP promoted greater shoot lengththan control media. Rooted seedlings showed high survival percentage (85%) during acclimatization.
Resumo:
The benefit promoted by ectomycorrhizal depends on the interaction between symbionts and phosphorus (P) contents. Phosphorus effect on ectomycorrhizal formation and the effectiveness of these in promoting plant growth for fungal pre-selection were assessed under in vitro conditions. For P effect evaluation, Eucalyptus urophylla seedlings inoculated with four Pisolithus sp. isolates and others non-inoculated were grown on substrate containing 0.87, 1.16 and 1.72 mg P per plant. For evaluation of effectiveness and fungal pre-selection, other 30 isolates of Pisolithus sp., Pisolithus microcarpus ITA06 isolate, Amanita muscaria AM16 isolate, Scleroderma areolatum SC129 isolate were studied. D26 isolate promoted the highest plant heights for the three P doses, D51 at the lower dose and D72 at the intermediate dose. P doses did not influenced shoot fresh weight and fungal colonization. In the pre-selection of fungi, 14 isolates of Pisolithus sp., P. microcarpus ITA06 isolate and S. areolatum SC129isolate increased plant height and fresh weight. D82 isolate of Pisolithus sp. had effect singly on plant height while D17 and D58 on fresh weight. Of these, only D15, D17, D58 and ITA06 had typical ectomycorrhizae. The cultivation in vitro has shown adequate for pre-selection of ectomycorrhizal fungi. Colonization and benefits depend on species and isolate. D15, D17 and D58 of Pisolithus sp. and P. microcarpus isolate ITA06 are the most promising for nursery studies.
Resumo:
The objective of this work was to establish an efficient protocol for in vitro multiplication and rooting, as well as ex vitroacclimatization of Aegiphila verticillata, a woody species found in Brazilian rocky fields. Aseptic cultures were established by seeds and two multiplication analyses were performed. In the first, we employed 6-benzylaminopurine (BAP – 0, 2.5, 5 and 7.5 μM) + α-naphthalene acetic acid (NAA – 0, 0.2, 0.4 and 0.6 μM) and, in the second, were studied adenine sulfate, kinetin and thidiazuron (0, 5, 7.5, 10 and 12.5 μM). After 90 days, we assessed the quantitative and qualitative shoot propagation. There were more than 90% seed germination and low contamination (2%). In multiplication phase, the culture medium that promoted the best quantitative and qualitative culture development was supplemented with 7.5 μM BAP + 0.4 μM NAA. In the rooting assay, were used NAA, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) (0, 0.1, 0.2, 0.3 or 0.4 μM). After 90 days, the root number and rooting quality were evaluated. In this analysis, differences were not found between the control and the other treatments. Rooted plantlets were acclimatized in styrofoam trays for 30 days, after which they were transferred to pots in the greenhouse. Only 3% of the plants subjected to initial acclimatization died and 70% of the plants transferred to the field conditions survived and showed normal development. The results founded in this work are the first involving in vitro propagation and ex vitroacclimatization of Aegiphila verticillata and provide a continuous supply of this medicinal native species, endangered due anthropogenic activities.
Resumo:
Eucalyptus plantations represent a short term and cost efficient alternative for sequestrating carbon dioxide from the atmosphere. Despite the known potential of forest plantations of fast growing species to store carbon in the biomass, there are relatively few studies including precise estimates of the amount of carbon in these plantations. In this study it was determined the carbon content in the stems, branches, leaves and roots of a clonal Eucalyptus grandis plantation in the Southeast of Brazil. We developed allometric equations to estimate the total amount of carbon and total biomass, and produced an estimate of the carbon stock in the stand level. Altogether, 23 sample trees were selected for aboveground biomass assessment. The roots of 9 of the 23 sampled trees were partially excavated to assess the belowground biomass at a singletree level. Two models with DBH, H and DBH2H were tested. The average relative share of carbon content in the stem, branch, leaf and root compartments was 44.6%, 43.0%, 46.1% and 37.8%, respectively, which is smaller than the generic value commonly used (50%). The best-fit allometric equations to estimate the total amount of carbon and total biomass had DBH2H as independent variable. The root-to-shoot ratio was relatively stable (C.V. = 27.5%) probably because the sub-sample was composed of clones. Total stand carbon stock in the Eucalyptus plantation was estimated to be 73.38 MgC ha-1, which is within the carbon stock range for Eucalyptus plantations.
Resumo:
ABSTRACTThe study was conducted with shoot tip explants of neem (Azadirachta indica A. Juss) to identify a viable regenerative process. Shoot tips were obtained from neem embryos cultured alternatingly in DKW medium supplemented with BAP and medium without hormones. Initial shoot development was influenced by cotyledon presence. Basal callus, excised from in vitro stem base, also presented organogenic potential. In some cases, plant lines, obtained from each seed, presented different characteristics. The most common characteristic observed in vitro was callus formation at the stem base. However, the rarest characteristics were stem callus formation and leaf senescence. The regenerated shoot tips were further subculture and rooted on a medium supplemented with IBA so that complete plants could be obtained. The rooted plants were transplanted to a greenhouse and successfully acclimatized. No significant differences in in vivo development were observed between neem plants from callus and from shoot tip propagation.
Resumo:
ABSTRACT The macaw palm [Acrocomia aculeata (Jacq.) Lood. ex Mart] has been domesticated to subsidize biodiesel production programs in Brazil. However, little is known about the seedling production of this species. This study aimed to evaluate substrate mixtures, limestone and phosphorus rates for substrate amendment and topdressing frequency in macaw palm seedlings. Three trials were conducted in a greenhouse up to six months of nursery cultivation. Trial 1: determination of percent mineral and organic fractions of seven substrate mixtures. Trial 2: evaluation of four limerates for soil amendment versus four phosphorus rates. Trial 3: evaluation of N, K and Mg topdressing frequency. Significant differences were found in the three trials for most of the variables (plant height, leaf number, shoot dry mass, root dry mass, vigor and bulb diameter). The main results obtained were as follow: Trial1 - the best seedling growth was observed in substrates with at least 25% organic matter. Trial2 -lime rates ranging from 0.50 to 1.25 kg associated with 3 to 4 kg of single superphosphate per m3 of substrate provided the best seedling growth. Trial 3 - topdressing fertilization provided better development of seedlings regardless of frequency.
EVALUATION OF SUBSTRATES AND AMF SPORULATION IN THE PRODUCTION OF SEEDLINGS OF NATIVE FOREST SPECIES
Resumo:
ABSTRACT The objective of this study was to evaluate organic substrates in the production of canafistula (Peltophorum dubium) (Spreng.) Taub, cutieira (Joannesiaprinceps Vell.), jatoba (Hymenaea courbaril L.) and rubber tree (Hevea brasiliensis M. Arg.) seedlings, native trees with potential use in forest restoration programs. The design was completely randomized with 10 substrate formulations with 4 repetitions of 3 plants for the four species. The evaluated substrates consisted of soil, bovine manure (BM), poultry manure (PM), chemical fertilizer (CF) and sand, in different proportions. The experiment was concluded at the end of 180 days for canafistula, cutieira and rubber and 210 days for jatoba. At the end of these periods, the root (RDM), shoot (SDM) and total (TDM) the dry matters of the seedlings were determined. Quantification of AMF spores and normalization between samples through SPORES/RDM correction were also performed. The Scott-Knott test at 5% probability was applied. Regarding biomass production, only canafistula had significant difference among the tested substrates. In relation to sporulation, the highest values were observed in cutieira and rubber tree in substrate containing PM. The substrates composed of 40 or 50% soil + 20% sand + 30% or 40 PM for canafistula; 50% soil + 20% sand + 30% PM for cutieira; and for jatoba and rubber tree 60% soil + 20% sand + 20% PM, enabled the best results in terms of biomass production in seedlings and AMF sporulation.
Resumo:
The present study aimed to determine the volumetric shrinkage rate of bean (Phaseolus vulgaris L.) seeds during air-drying under different conditions of air, temperature and relative humidity, and to adjust several mathematical models to the empiric values observed, and select the one that best represents the phenomenon. Six mathematical models were adjusted to the experimental values to represent the phenomenon. It was determined the degree of adjustment of each model from the value of the coefficient of determination, the behavior of the distribution of the residuals, and the magnitude of the average relative and estimated errors. The rate of volumetric shrinkage that occurred in bean seeds during drying is between 25 and 37%. It basically depends on the final moisture content, regardless of the air conditions during drying. The Modified Bala & Woods' model best represented the process.
Resumo:
This study aimed to evaluate the quality of beans (Phaseolus vulgaris L.) stored with different moisture contents under hermetic conditions. Beans with 12.3%, 15.7%, and 17.8% moisture content were used in the experiment. They were packed in bag type silos (3 kg), PET bottles (1.5 L), and glass containers (3 L), covered with organza fabric (control), and stored at 25 ºC and 70±5% relative humidity, for 120 days. The evaluated characteristics included moisture content, apparent density, electrical conductivity, germination percentage, cooking time, and bean classification, every 30 days. Except for the electrical conductivity and cooking time, the other characteristics were kept for 120 days in the stored product with moisture contents of 12.3% and 15.7% in hermetic conditions. Beans with 17.8% of the moisture content, electrical conductivity and cooking time increased, and apparent density and germination were reduced. Beans stored in the control, with any of the moisture contents, showed high quality loss during the long storage. It was concluded that it is possible to storage beans with moisture contents of 12.3% and 15.7%, with quality, for until 120 days, in hermetic conditions.
Resumo:
It was to aimed it to investigate effects of various saline water use strategies on melon production and quality of two cultivars (Cucumis melo L., Sancho - C1 and Medellín - C2. The plants were irrigated with water of low (S1 = 0.61 dS m-1) and high (S2 = 4.78 dS m-1) salinity levels, during each crop stage: S1S1S2S2 - T1; S2S1S2S2 - T2; S2S2S1S2 - T3. The 1st, 2nd, 3rd and 4th terms of these sequences correspond to initial growth, flowering, fruit ripening and harvest phenological stages, respectively. Additionally, there was irrigation rotation during all cycle, with water S1 during two days followed by S2 for one day (S1 2 dias + S2 1 dia - T4) and irrigation with non-salt water S2 during all cycle - T5. Moreover, we used as control, the irrigation water at 3.2 dS m-1 resulting from water mixture of S1 and S2 - T6 (farm used irrigation management). The experiment was carried out in Pedra Preta Farm, in Mossoró, RN, using an entire randomized block statistical design in a 6x2 subdivided plot scheme with four replications. Saline water irrigation at initial growth stage reduces leaf area and shoot dry phytomass of Sancho and Medellín melon cultivars. The irrigation by T4 provided the highest phytomass production of fruits at 48 DAS, reducing in 33% of good quality water in irrigation.
Resumo:
ABSTRACT Cocoa is an important commercial crop in the tropics; and estimating the carbon emissions in the producing-areas is a worthwhile effort. The main goal of the current paper was to evaluate the carbon footprint (CF) per kilogram of Colombian cocoa bean produced under conventional and agroforestry managements, following the methods proposed by PAS 2050. In this research, we compared our results to other worldwide researches, showing an overview of the current limitations and challenges involving the CF researches. Our results showed that all calculated environmental burdens were lower for the conventional management. In the agroforestry practice, composting of cocoa pod husks contributed with approximately 34.00E+00 g methane and 2.55E+00 g nitrous oxide emissions per kilogram of cocoa grain produced. Therefore, such practice could reduce CF by 6.00E+00 kg CO2 Eq kg-1, which is certainly a significant amount. These cocoa residues left on the ground have a strong impact on CF of both studied managements due to the anaerobic decomposition of organic matter, which represents more than 85% of emissions. We concluded that both evaluated production processes can emit environmental burdens at the same magnitude. Definitely, there is a widespread need to improve cocoa production system by changing old and less productive plants to the so called clones to ensure cocoa yield and quality worldwide.