425 resultados para Marcia Colish
Resumo:
The Surface Enhanced Raman Scattering (SERS) effect was observed for the first time in 1974, but it was only considered a new effect three years later, hence, nearly twenty years ago. Since its discovery, a significant amount of investigations have been performed aiming at to clarify the nature of the observed enhancement, to improve the surface stability and to establish applications which nowadays range from the study of biomolecules to catalysis. Some of the more relevant aspects of this effect which have been examined across the last two decades are summarized in this paper which presents the introductory aspects of SERS alongside with several of its applications.
Resumo:
Polyaddition of commercial monomers is easily performed on a domestic microwave oven. The rate of polymerization depends on the structure of the monomer, power and time of irradiation. This methodology can easily be used to demonstrate the acceleration of organic reactions promoted by microwaves.
Implementação de um sistema de eletroforese capilar com detecção de fluorescência induzida por laser
Resumo:
A capillary electrophoresis system using laser induced fluorescence detection is described. A Raman system equipped with a microscope has been used to focus the laser beam on the capillary giving a lateral resolution of 1.5 mm. The fluorescence signal of the analyte (ZnPcTS - tetrasulfonated zinc-phthalocyanine) was collected by the microscope objectives and analysed by a monochromator with confocal characteristics equipped with a CCD detector. Electropherograms obtained with this system were compared to those obtained on a commercial instrument, showing that the described system presents a lower detection limit and better resolution.
Resumo:
An experience aiming to promote a residue interchange and recovery between the teaching laboratories of the Chemistry Institute of this University is described. At the present, several residues interchange have already appeared as advantageous. To make the work easier, a software has been developed in order to keep a record of all the residues generated by the teaching laboratories. Standard labels have been developed for the residues in order to organize them. The software and the label design are described.
Resumo:
Chemically synthesized surfactants are widely used for many purposes in almost every sector of modern industry. Surface-active compounds of biological origin (biosurfactants) have been gaining attention in recent years because of some advantages such as biodegradability, low toxicity, diversity of applications and functionality under extreme conditions. Microbial biosurfactants are useful in bioremediation of water and soil, enhanced oil recovery, and in many formulations of petrochemical, chemical, pharmaceutical, food, cosmetic and textile industries. The importance of biosurfactants, their characteristics and industrial applications are discussed.
Resumo:
Raman dispersion refers to the dependence of the position of Raman bands on the energy of the exciting radiation. In this work, the three main models currently used to explain this phenomenon (Conjugated Length Model, Amplitude Mode Model and Effective Conjugation Coordinate Model) are discussed. Raman dispersion is a consequence of pi electron delocalization, but each model describes in a different way how pi electron delocalization affects the position of Raman bands. Here the features, qualities and problems of the three models are highlighted.
Resumo:
Proanthocyanidins from P. contorta leaves and from a commercial quebracho extract were isolated and characterized. Flavonoids, catechins and gallic acid were also identified in the extracts of P. contorta. Compounds were evaluated for their antioxidant properties and for their antiviral activity against an acyclovir-resistant herpes simplex virus type 1 strain. The low molecular weight phenolic derivatives and the proanthocyanidins from P. contorta showed the highest antioxidant activity. Purified proanthocyanidins from both P. contorta and quebracho showed the same maximum non toxic concentrations (25 µg/mL), with 82.2% and 100% of virus inhibition, respectively.
Resumo:
We have produced nanocomposite films of Ni:SiO2 by an alternative polymeric precursor route. Films, with thickness of ~ 1000 nm, were characterized by several techniques including X-ray diffraction, scanning electron microscopy, atomic force microscopy, flame absorption atomic spectrometry, and dc magnetization. Results from the microstructural characterizations indicated that metallic Ni-nanoparticles with average diameter of ~ 3 nm are homogeneously distributed in an amorphous SiO2 matrix. Magnetization measurements revealed a blocking temperature T B ~ 7 K for the most diluted sample and the absence of an exchange bias suggesting that Ni nanoparticles are free from an oxide layer.
Resumo:
This work was performed with the aim of evaluating the chemical variability among samples of Aloysia sellowii (Verbenaceae) collected in different geographical regions as well as the application of supercritical CO2 for obtaining essential oil. Thus, samples were collected in different localities and oils were isolated by hydrodistillation and supercritical CO2. Results showed existence of two chimiotypes in the species (cineole and sabinene). The supercritical CO2 extraction process was appropriate for extraction of A. sellowii essential oil at 40 ºC, 110 bar, 2 mL/min of flow and 10 min of extraction time.
Resumo:
Surface-Enhanced Raman Scattering - SERS - underwent huge advances since a single-molecule Raman spectrum was obtained in 1997. New theoretical and experimental approaches emerged since then leading to a better understanding of the enhancement mechanisms and to a significant improvement in the Raman signal. This review presents the current status of the SERS effect and the promising ways of designing and preparing high performance SERS-active substrates.
Resumo:
The potentialities of X-ray Absorption Near Edge Spectroscopy (XANES) of the N K edge (N K) obtained with the spherical grating monochromator beam line at the Brazilian National Synchrotron Light Laboratory are explored in the investigation of poly(aniline), nanocomposites and dyes. Through the analysis of N K XANES spectra of conducting polymers and many other dye compounds that are dominated by 1s®p* transitions, it was possible to correlate the band energy value with the nitrogen oxidation states. An extensive N K XANES spectral database was obtained, thus permitting the elucidation of the nature of different nitrogens present in the intercalated conducting polymers.
Resumo:
In the present paper we studied the recoveries of glyphosate, N-(phosphonomethyl)glycine (GLY) and its major metabolite, (aminomethyl)phosphonic acid (AMPA) in soil using national (Brazilian) ion-exchange resins, derivatization by a mixture of trifluoroacetic anhydride and trifluoroethanol and analyses by GC-MS. The quantification limits were 12 ng.g-1 for both compounds and the methodology showed a range of recuperation from 85 to 94% with coefficients of variation (CV) ranging from 4.07 to 6.91% for GLY. For AMPA, the mean recoveries ranged from 87 to 102% with CVs ranging from 5.81 to 6.99%. Additional studies showed that, due to the instability of the derivatized compounds, they must be analysed keeping constant time between derivatization and analysis, preferably less than 24 h.
Resumo:
Volatile compounds from green and roasted yerba mate were analyzed by gas chromatography/mass spectrometry and the flavor profile from yerba mate beverages was determined by descriptive quantitative analyses. The main compounds tentatively identified in green mate were linalool, alpha-terpineol and trans-linalool oxide and in roasted mate were (E,Z)-2,4-heptadienal isomers and 5-methylfurfural. Green mate infusion was qualified as having bitter taste and aroma as well as green grass aroma while roasted mate was defined as having a smooth, slightly burnt aroma. The relationship between the tentatively identified compounds and flavor must be determined by olfatometric analysis.
Resumo:
The fact that alpha- and beta-chitin adopt different arrays in the solid state is explored to emphasize their different properties and distinct spectral characteristics and X ray diffraction patterns. The methods for their extraction from the biomass in view of the preservation of their native structures and aiming to fulfill the claims of purity and uniformity for potential applications are discussed. The different arrays adopted by alpha- and beta-chitin also result in distinct reactivities toward the deacetylation reaction. Thus, the deacetylation of beta-chitin is more efficient owing to the better accessibility to amide groups due to the lower crystallinity of this polymorph.