346 resultados para Fertilization (15N)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

No Rio Grande do Sul, o teor de N na folha inteira ou pecíolo e a expectativa de produção têm sido usados tanto para a tomada de decisão quanto no estabelecimento da dose de N a ser aplicada na cultura da videira. Entretanto, se carece de conhecimentos sobre a utilização, a distribuição e a acumulação na planta do N aplicado. O presente trabalho objetivou estimar o destino do N em videiras produtivas quando aplicado na época do inchamento das gemas. O experimento foi conduzido na safra 2002-2003 em um vinhedo de viníferas, cvs. Chardonnay e Riesling Renano, na Embrapa Uva e Vinho, em Bento Gonçalves - RS, sobre um Neossolo Litólico. As videiras receberam a aplicação de 15,91g N planta-1 no inchamento das gemas, correspondendo a 40 kg N ha-1, enriquecido com 4% de átomos 15N em excesso. Foram coletadas gemas brotadas e folhas na parte central do ramo emitido no ano, em oito épocas na cv. Chardonnay e sete épocas na cv. Riesling Renano. Na última coleta das folhas, as videiras foram cortadas e separadas em cachos, folhas, ramos do ano, ramos dos anos anteriores e caule. Foram secadas, determinada a produção de matéria seca e os teores de N total e 15N. Os resultados mostraram que a maior porcentagem de N nas folhas das videiras, cvs. Chardonnay e Riesling Renano, na brotação até a colheita da uva, é derivada de formas diferentes de N aplicado no inchamento das gemas. Na colheita da uva, a maior quantidade do N acumulado nas partes anuais e perenes das videiras é derivada do N do solo, sendo muito pequenas as quantidades de N aplicado no inchamento das gemas armazenado nas partes perenes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yield and physical and chemical characteristics of 'Paluma' guava fruit were evaluated as a function of the harvest at different maturity stages, under influence of nitrogen and potassium fertilization, in Petrolina, State of Pernambuco, Brazil. Fertilizer rates were 67 kg N + 33 kg K2O, 133 kg N + 67 kg K2O, 200 kg N + 100 kg K2O and 267 kg N + 133 kg K2O per hectare. Fruits were evaluated at maturity stages 2, 3, 4 and 5, established according to peel color. Higher doses of N and K induced higher yields. Nevertheless, fertilization with 200 kg of N + 100 kg of K per hectare improved fruit quality, delaying ascorbic acid breakdown and conserving pulp firmness. Main changes took place at maturity stages 4 and 5, when the fruit should present ideal conditions for consumption, namely the increase on soluble solids and soluble sugars content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of foundation and leaf fertilization with micronutrients on fruit size and quality of pineapple cv. Vitória under the environmental conditions of the Baixo Acaraú irrigated perimeter in Northern Ceará State, Brazil, under two covers (bagana and black plastic) of the sandy soil of low fertility. The experimental design was a randomized split blocks one with four levels of soil dressing and four levels of foliar fertilization, with five replications. Micronutrient soil dressing was studied as FTE-12 at doses of 0, 60, 120 and 180 kg ha-1. The four levels of foliar fertilization were: LF0 (without fertilizer), LF 1 (15 leaf fertilization, using the amount of 1158.75 g Fe ha-1, 844.65 g Mn ha-1, 391.5 g ha-1 Zn, 322.65 g ha-1 Cu and 216 g ha-1 B), LF2 (15 leaf fertilization, using twice the quantities of level LF1) and LF3 (15 leaf fertilization, using three times the amount of level LF1). At 13 months after planting the micropropagated plantlets was carried out the floral induction treatment and five months later the fruit harvest determining the following variables: fruit weight and median diameter, soluble solids content (SS) and titratable acidity (TA). Both fruit weight and diameter increased with increasing doses of micronutrients applied to the soil and to the leaves, of plants grown both on bagana soil cover and plastic mulch. On the other hand fruit pulp quality was little affected by the treatments studied. There were a small increase of SS contents for plants grown on bagana soil cover and a small decrease of titratable acidity for those grown on plastic mulch, in both cases just in response to micronutrient foliar application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study evaluated the leaf nutritional levels of peach and nectarine trees under subtropical climate in order to improve the fertilization practices. The experiment was carried out in São Paulo state University, Botucatu, São Paulo State, Brazil. The experimental design consisted of subdivided plots, in which plots corresponded to cultivars and subplots to the leaf sample periods. The evaluated peach cultivars were: Marli, Turmalina, Precocinho, Jubileu, Cascata 968, Cascata 848, CP 951C, CP 9553CYN, and Tropic Beauty, and that of nectarine was 'Sun Blaze'. The sample periods were: after harvest, plants in vegetative period; dormancy; beginning of flowering and fruiting (standard sample). Results indicated significant variations in the levels of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn for the sampling period and in N, Ca, Mg, S, B, Fe and Mn levels for the cultivars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Levels of Zn in tropical soils profoundly influences growth and nutrition of tree crops. Research was undertaken to assess the effect of soil Zn on growth and nutrition of clonal cacao tree seedlings of PH 16. Three acidic Oxisol soils differing in texture were used with nine doses of Zn (0, 1, 2, 4, 8, 16, 32, 48, and 64 mg dm-3). Rooted clonal seedlings were grown in plastic pot with 11 dm-3 of the soils at varying Zn levels for 240 days. At harvest growth (dry matter mass of leaves, stems, shoots, roots, and total) and nutrient concentrations were determined. The clonal cacao seedlings showed differences for production of dry matter mass and foliar nutrient concentrations for P, K, Ca, Mg, Mn, Fe, Zn, and Cu. There was Zn toxicity in all soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Fertilization of temperate fruit trees, such as grapevine ( Vitis spp.), apple ( Malus domestica), and pear ( Pyrus communis) is an important tool to achive maximum yield and fruit quality. Fertilizers are provided when soil fertility does not allow trees to express their genetic potential, and time and rate of application should be scheduled to promote fruit quality. Grapevine berries, must and wine quality are affected principally by N, that regulate the synthesis of some important compounds, such as anthocyanins, which are responsible for coloring of the must and the wine. Fermenation of the must may stop in grapes with low concentration of N because N is requested in high amount by yeasts. An N excess may increase the pulp to peel ratio, diluting the concentration of anthocyanins and promoting the migration of anthocyanins from berries to the growing plant organs; a decrease of grape juice soluble solid concentration is also expected because of an increase in vegetative growth. Potassium is also important for wine quality contributing to adequate berry maturation, concentration of sugars, synthesis of phenols and the regulation of pH and acidity. In apple and pear, Ca and K are important for fruit quality and storage. Potassium is the most important component of fruit, however, any excess should be avoided and an adequate K:Ca balance should be achieved. Adequate concentration of Ca in the fruit prevents pre- and post-harvest fruit disorders and, at the same time, increases tolerance to pathogens. Although N promotes adequate growth soil N availability should be monitored to avoid excessive N uptake that may decrease fruit skin color and storability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A system for disposal and recovery of the main effluents and chemical waist from isotope separation plants and enriched compounds-15N and 34S production has been carried out at the Stable Isotope Laboratory (LIE) of the CENA/USP. Around four hundred thousand liters of effluents has been recovered yearly. Among the recovered chemical wastes, the more relevant are: ammonia; brome; ammonium and sodium sulfate; sodium hydroxide; sulfur dioxide; and hydrochloric acid. Chemical wastes containg recoverable heavy metals (Ag, Cr and Cu) and solvents (methanol, ethanol and acetone) are processed and recovered. Gaseous emissions, mainly H2S are used for recovery of heavy metals solutions. The minimization of the residues waters, as well the reduction of electric energy consume was established using a water deionization system. A cost/effect balance of the process is reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systematic studies were undertaken in the intra zeolitic media to better understand the ability of zeolite type LTA in occluded nitrogen used in fertilizer and soil conditioning. We have measured the dry matter production from the cultivation of corn in a greenhouse for about 40 days, and also the amounts of nitrogen absorbed, retained and lost by leaching. The dry matter production in the cultivation with different concentrations of nitrogen occluded in the zeolite, was more efficient than the traditional fertilizer, which demonstrated better use of nitrogen to reduce leaching losses, which implies a possible reduction of costs for nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants absorb phosphorus from the soil, which has low levels of this element due to the poor solubility of these compounds in soil and high adsorption capacity of the element by soil particles. Therefore, the purpose of this study was to assess, using hydroxyapatite nanoparticles synthesized in the laboratory, the amount of phosphorus available under different conditions. The results showed that the phosphorus compound had highest solubility in hydroxyapatite sintered at 300°C in an oven for 2h and diluted to 0.05M with MilliQ water, corroborating the theory that the stronger the agglomeration of the nanoparticles, the fewer the pores and the poorer their solubility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractThis study evaluates the chemical processes responsible for the nitrous oxide (N2O) and methane (CH4) fluxes in the managed pasture (PM) and unmanaged pasture (PNM). In addition, the impact of nitrogen fertilization on the N2O and CH4 fluxes was assessed. The experiments were conducted on three farms in Alta Floresta city in the state of Mato Grosso. Both regular and intensive samples were collected from PM, PNM, and forest areas for each of the properties. The gases were sampled using static chambers in the morning. Higher N2O fluxes were recorded in the PMs, whereas the CH4 fluxes showed no influence of nitrogen fertilization in both regular and intensive samples. Low fertilizer levels resulted in low N2O emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two soybean (Glycine max) cultivars were used in this study, Ocepar 4, rated as moderately resistant to Meloidogyne incognita race 3 but susceptible to M. javanica, and 'BR 16', susceptible to both nematodes. The effect of nematodes infection on the uptake and transport of N, P and Ca to the shoot was studied in plants growing in a split root system. The upper half was inoculated with 0, 3,000, 9,000 or 27,000 eggs/plant while the lower half received 15N, 32P or 45Ca. Infected plants showed an increase of root but a decrease of shoot mass with increasing inoculum levels. In general, total endogenous nutrients increased in the roots and tended to decrease in the shoots with increasing inoculum levels. When concentrations were calculated, there was an increase in the three nutrients in the roots, and an increase of Ca but no significant variation of N and P was observed in the shoots. The total amount of 15N in the roots increased at the highest inoculum levels but 32P and 45Ca decreased. In the shoots there was a reduction of 32P and 45Ca. The specific concentrations of the labelled nutrients (abundance or radioactivity/tissue mass) also showed a decrease of 32P and 45Ca in the shoots and roots of infected plants and an increase of 15N in the shoots. Considering that overall nutrient concentrations reflect cumulative nutrient uptake and the data from labelled elements gave information at a specific moment of the infection, thus nematodes do interfere with nutrient uptake and translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed the nutritional composition and isotope ratios (C and N) of big-leaf mahogany (Swietenia macrophylla King) leaves in plantations established on contrasting soils and climates in Central America (State of Quintana Roo, Yucatán, México) and South America (State of Pará, Brazil). The objective was to determine the adaptability of this species to large differences in nutrient availability and rainfall regimes. Nutrient concentrations of leaves and soils were determined spectrophotometrically, and isotope ratios were measured using mass spectrometric techniques.In Pará soils were sandier, and acidic, receiving above 2000 mm of rain, whereas in Quintana Roo soils were predominantly clayey, with neutral to alkaline pH due to the underlying calcareous substrate, with about 1300 mm of rain. Leaf area/weight ratio was similar for both sites, but leaves from Quintana Roo were significantly smaller. Average N and K concentrations of adult leaves were similar, whereas Ca concentration was only slightly lower in Pará in spite of large differences in Ca availability. Leaves from this site had slightly higher P and lower Al concentrations. Differences in water use efficiency as measured by the natural abundance of 13C were negligible, the main effect of lower rainfall in Quintana Roo seemed to be a reduction in leaf area. The N isotope signature (δ15N) was more positive in Pará than in Quintana Roo, suggesting higher denitrification rates in the former. Results reveal a calciotrophic behavior and a remarkable capacity of mahogany to compensate for large differences in soil texture and nutrient availability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study analyzed the reproductive system and the pollen dispersion pattern of Qualea grandiflora progenies. This is a typical species from the Brazilian Cerrado about which there are not too many studies from the genetics point of view. The study was conducted in an area of 2.2 hectares located in the Conservation Unit managed by the Forest Institute of the state of São Paulo, Brazil (Assis State Forest). Total genomic DNA of 300 seeds from 25 plants (12 seeds from each plant) was extracted and amplified using specific primers to obtain microsatellite markers. Results showed that selfing is frequent among adults and progenies, and the species reproduces by outcrossing between related and unrelated individuals (0.913). The single-locus outcrossing rate was 0.632, which indicates that mating between unrelated individuals is more frequent than between related plants. The selfing rate was low (0.087), that is, the species is allogamous and self-fertilization is reduced. About 35% of the plants in the progenies were full-sibs, and about 57%, half-sibs. Besides, about 8% of the progenies were selfing siblings. The genetic differentiation coefficient within progenies was 0.139, whereas the fixation rate was about 27%. The estimate of the effective size revealed that the genetic representativeness of descent was lower than expected in random mating progenies: The analyzed samples corresponded to only 13.2 individuals of an ideal panmictic population. In environmental recovery programs, seeds, preferably from different fruits, should be collected from 95 trees to preserve the genetic diversity of the species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forest litter decomposition is a major process in returning nutrients to soils and thus promoting wood productivity in the humid tropic. This study aimed to assess decomposition of eucalypt litter in the Rio Doce region, Brazil. Leaf litter was sampled under clonal eucalypt stands aged 2, 4 and 6 years on hillslopes and footslopes. Soil and soil+litter samples were incubated at two levels of soil moisture, temperature and fertilization. C-CO2 emissions from soil measured during 106 days were higher at 32 °C than at 23°C, mainly for the 2-yr-old stand on footslope. When leaf litter was added on soils, C-CO2 emissions were eight times higher, mainly on footslopes, with no effect of stand age. Leaf decomposition in situ, assessed with a litterbag experiment showed a mean weight loss of at least 50% during 365 days, reaching 74% for 2 yr-old stands on footslopes. In comparison with data from the native forest and the literature, no apparent restrictions were found in eucalypt litter decomposition. Differences between in vitro and in situ results, and between eucalypt and native forest, were most likely related to the response of diverse decomposer communities and to substrate quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Farmers have difficult of determining the evenness of transverse distribution and the working width, due the tests with this aim require equipments and complex methodologies. So, this study evaluates some alternative containers with the aim to allow a more accessible adjustment of the full width of the solid fertilizer spreaders. Four different containers were tested: i) standard container constructed in accordance with ISO 5690/1; ii) container of polyethylene (plastic trays) with screen shading to prevent the ricochet of material; iii) containers composed by boxes of long-life milk, and iv) containers composed by flowerpots (number 3.5). Also, three different spreaders were used for the tests. Alternative containers showed greater retention of particles than the standardized containers. The full width of work obtained for the coefficients of variation of 12.5; 15; 17.5 and 20%, ranged due the containers in the different pathways. The flowerpots of polyethylene showed similar results to the standardized containers. The heights of the containers were more important for its efficiency than its area of collection.