295 resultados para Protozoa, Pathogenic.
Resumo:
Early immunological data, obtained by immunodiffusion and immunoelectrophoresis, on the whole-cell antigenicity of kinetoplastid protozoa were retrieved and used to construct a dendrogram of antigenic distances. Remarkably, they supported the same taxonomic conclusions as analyses based on DNA and protein sequence data.
Resumo:
Lapachol was chemically modified to obtain its thiosemicarbazone and semicarbazone derivatives. These compounds were tested for antimicrobial activity against several bacteria and fungi by the broth microdilution method. The thiosemicarbazone and semicarbazone derivatives of lapachol exhibited antimicrobial activity against the bacteria Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentrations (MICs) of 0.05 and 0.10 µmol/mL, respectively. The thiosemicarbazone and semicarbazone derivatives were also active against the pathogenic yeast Cryptococcus gattii (MICs of 0.10 and 0.20 µmol/mL, respectively). In addition, the lapachol thiosemicarbazone derivative was active against 11 clinical isolates of Paracoccidioides brasiliensis, with MICs ranging from 0.01-0.10 µmol/mL. The lapachol-derived thiosemicarbazone was not cytotoxic to normal cells at the concentrations that were active against fungi and bacteria. We synthesised, for the first time, thiosemicarbazone and semicarbazone derivatives of lapachol. The MICs for the lapachol-derived thiosemicarbazone against S. aureus, E. faecalis, C. gattii and several isolates of P. brasiliensis indicated that this compound has the potential to be developed into novel drugs to treat infections caused these microbes.
Resumo:
Recently, while studying erythrocytic apoptosis during Plasmodium yoelii infection, we observed an increase in the levels of non-parasitised red blood cell (nRBC) apoptosis, which could be related to malarial anaemia. Therefore, in the present study, we attempted to investigate whether nRBC apoptosis is associated with the peripheral RBC count, parasite load or immune response. To this end, BALB/c mice were infected with P. yoelii 17XL and nRBC apoptosis, number of peripheral RBCs, parasitaemia and plasmatic levels of cytokines, nitric oxide and anti-RBC antibodies were evaluated at the early and late stages of anaemia. The apoptosis of nRBCs increased at the late stage and was associated with parasitaemia, but not with the intensity of the immune response. The increased percentage of nRBC apoptosis that was observed when anaemia was accentuated was not related to a reduction in peripheral RBCs. We conclude that nRBC apoptosis in P. yoelii malaria appears to be induced in response to a high parasite load. Further studies on malaria models in which acute anaemia develops during low parasitaemia are needed to identify the potential pathogenic role of nRBC apoptosis.
Resumo:
Phospholipase is an important virulence factor for pathogenic fungi. In this study, we demonstrate the following: (i) the Paracoccidioides brasiliensis pld gene is preferentially expressed in mycelium cells, (ii) the plb1 gene is mostly up-regulated by infection after 6 h of co-infection of MH-S cells or during BALB/c mice lung infection, (iii) during lung infection, plb1, plc and pld gene expression are significantly increased 6-48 h post-infection compared to 56 days after infection, strongly suggesting that phospholipases play a role in the early events of infection, but not during the chronic stages of pulmonary infection by P. brasiliensis.
Resumo:
Prolonged culturing of many microorganisms leads to the loss of virulence and a reduction of their infective capacity. However, little is known about the changes in the pathogenic strains of Acanthamoeba after long culture periods. Our study evaluated the effect of prolonged culturing on the invasiveness of different isolates of Acanthamoeba in an in vivo rat model. ATCC strains of Acanthamoeba, isolates from the environment and clinical cases were evaluated. The in vivo model was effective in establishing the infection and differentiating the pathogenicity of the isolates and re-isolates. The amoebae cultured in the laboratory for long periods were less virulent than those that were recently isolated, confirming the importance of passing Acanthamoeba strains in animal models.
Resumo:
The adjustment of all species, animals and plants, to the Earth’s cyclic environments is ensured by their temporal organisation. The relationships between parasites, vectors and hosts rely greatly upon the synchronisation of their biological rhythms, especially circadian rhythms. In this short note, parasitic infections by Protozoa and by microfilariae have been chosen as examples of the dependence of successful transmission mechanisms on temporal components.
Resumo:
Fibrocytes are important for understanding the progression of many diseases because they are present in areas where pathogenic lesions are generated. However, the morphology of fibrocytes and their interactions with parasites are poorly understood. In this study, we examined the morphology of peripheral blood fibrocytes and their interactions with Leishmania (L.) amazonensis . Through ultrastructural analysis, we describe the details of fibrocyte morphology and how fibrocytes rapidly internaliseLeishmania promastigotes. The parasites differentiated into amastigotes after 2 h in phagolysosomes and the infection was completely resolved after 72 h. Early in the infection, we found increased nitric oxide production and large lysosomes with electron-dense material. These factors may regulate the proliferation and death of the parasites. Because fibrocytes are present at the infection site and are directly involved in developing cutaneous leishmaniasis, they are targets for effective, non-toxic cell-based therapies that control and treat leishmaniasis.
Resumo:
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.
Resumo:
Over the last decades, Candida spp have been responsible for an increasing number of infections, especially in patients requiring intensive care. Knowledge of local epidemiology and analysis of the spread of these pathogens is important in understanding and controlling their transmission. The aim of this study was to evaluate the genetic diversity of 31 Candida albicans and 17 Candida glabrata isolates recovered from intensive care unit patients from the tertiary hospital in Krakow between 2011-2012. The strains were typed by random amplified polymorphic DNA (RAPD) polymerase chain reaction using five primers (CD16AS, HP1247, ERIC-2, OPE-3 and OPE-18). The results of the present investigation revealed a high degree of genetic diversity among the isolates. No clonal relationship was found among the C. albicans strains, whereas two C. glabrata isolates were identical. The source of Candida infection appeared to be mostly endogenous; however, the presence of two clonal C. glabrata strains suggested the possibility of cross-transmission of these pathogens. Our study confirmed the high discriminatory power of the RAPD technique in the molecular typing of Candida clinical isolates. This method may be applied to the evaluation of transmission routes of pathogenic fungi on a local level.
Resumo:
Viruses are the major contributors to the morbidity and mortality of upper and lower acute respiratory infections (ARIs) for all age groups. The aim of this study was to determine the frequencies for a large range of respiratory viruses using a sensitive molecular detection technique in specimens from outpatients of all ages with ARIs. Nasopharyngeal aspirates were obtained from 162 individuals between August 2007-August 2009. Twenty-three pathogenic respiratory agents, 18 respiratory viruses and five bacteria were investigated using multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) and indirect immunofluorescence assay (IIF). Through IIF, 33 (20.4%) specimens with respiratory virus were recognised, with influenza virus representing over half of the positive samples. Through a multiplex real-time RT-PCR assay, 88 (54.3%) positive samples were detected; the most prevalent respiratory viral pathogens were influenza, human rhinovirus and respiratory syncytial virus (RSV). Six cases of viral co-detection were observed, mainly involving RSV. The use of multiplex real-time RT-PCR increased the viral detection by 33.9% and revealed a larger number of respiratory viruses implicated in ARI cases, including the most recently described respiratory viruses [human bocavirus, human metapneumovirus, influenza A (H1N1) pdm09 virus, human coronavirus (HCoV) NL63 and HCoV HKU1].