311 resultados para Dogs - Diseases
Abnormal subcellular distribution of GLUT4 protein in obese and insulin-treated diabetic female dogs
Resumo:
The GLUT4 transporter plays a key role in insulin-induced glucose uptake, which is impaired in insulin resistance. The objective of the present study was to investigate the tissue content and the subcellular distribution of GLUT4 protein in 4- to 12-year-old control, obese and insulin-treated diabetic mongrel female dogs (4 animals per group). The parametrial white adipose tissue was sampled and processed to obtain both plasma membrane and microsome subcellular fractions for GLUT4 analysis by Western blotting. There was no significant difference in glycemia and insulinemia between control and obese animals. Diabetic dogs showed hyperglycemia (369.9 ± 89.9 mg/dl). Compared to control, the plasma membrane GLUT4, reported per g tissue, was reduced by 55% (P < 0.01) in obese dogs, and increased by 30% (P < 0.05) in diabetic dogs, and the microsomal GLUT4 was increased by ~45% (P < 0.001) in both obese and diabetic animals. Considering the sum of GLUT4 measured in plasma membrane and microsome as total cellular GLUT4, percent GLUT4 present in plasma membrane was reduced by ~65% (P < 0.001) in obese compared to control and diabetic animals. Since insulin stimulates GLUT4 translocation to the plasma membrane, percent GLUT4 in plasma membrane was divided by the insulinemia at the time of tissue removal and was found to be reduced by 75% (P < 0.01) in obese compared to control dogs. We conclude that the insulin-stimulated translocation of GLUT4 to the cell surface is reduced in obese female dogs. This probably contributes to insulin resistance, which plays an important role in glucose homeostasis in dogs.
Resumo:
Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.
Resumo:
Many extrahepatic manifestations, including rheumatic diseases, have been reported to be associated with hepatitis C virus (HCV) infection. In order to investigate the prevalence of HCV infection among patients with rheumatic diseases, in the present study we interviewed 367 patients and tested their blood samples for HCV antibodies (anti-HCV) by an enzyme-linked immunosorbent assay. Anti-HCV-reactive samples were retested for confirmation by a line immunoassay and also for HCV RNA detection by the polymerase chain reaction. HCV RNA-positive samples were genotyped by INNO-LIPA. An overall HCV infection prevalence of 1.9% (7/367) was found. Of the 7 HCV-infected patients, 4 had systemic lupus erythematosus and 3 rheumatoid arthritis, resulting in positivity rates of 2.3 and 3.4%, respectively. HCV RNA genotyping revealed the presence of subtypes 1a (57.1%), 1b (28.6%) and 3a (14.3%). The clinical course was favorable for all HCV-infected patients, except one, who died due to renal insufficiency related to lupus nephritis. These results demonstrate a low HCV infection prevalence among the population studied. In the few positive cases, we observed no adverse influence of this infection on the clinical evolution of the rheumatic disease.
Resumo:
We investigated the systemic and regional hemodynamic effects of early crystalloid infusion in an experimental model of septic shock induced by intravenous inoculation with live Escherichia coli. Anesthetized dogs received an intravenous infusion of 1.2 x 10(10) cfu/kg live E. coli in 30 min. After 30 min of observation, they were randomized to controls (no fluids; N = 7), or fluid resuscitation with lactated Ringer's solution, 16 ml/kg (N = 7) or 32 ml/kg (N = 7) over 30 min and followed for 120 min. Cardiac index, portal blood flow, mean arterial pressure, systemic and regional oxygen-derived variables, blood lactate, and gastric PCO2 were assessed. Rapid and progressive cardiovascular deterioration with reduction in cardiac output, mean arterial pressure and portal blood flow (~50, ~25 and ~70%, respectively) was induced by the live bacteria challenge. Systemic and regional territories showed significant increases in oxygen extraction and in lactate levels. Significant increases in venous-arterial (~9.6 mmHg), portal-arterial (~12.1 mmHg) and gastric mucosal-arterial (~18.4 mmHg) PCO2 gradients were also observed. Early fluid replacement, especially with 32 ml/kg volumes of crystalloids, promoted only partial and transient benefits such as increases of ~76% in cardiac index, of ~50% in portal vein blood flow and decreases in venous-arterial, portal-arterial, gastric mucosal-arterial PCO2 gradients (7.2 ± 1.0, 7.2 ± 1.3 and 9.7 ± 2.5 mmHg, respectively). The fluid infusion promoted only modest and transient benefits, unable to restore the systemic and regional perfusional and metabolic changes in this hypodynamic septic shock model.
Resumo:
The aim of the present study was to evaluate the impact of a multiple dose regimen of a liposomal formulation of meglumine antimoniate (LMA) on the pharmacokinetics of antimony in the bone marrow of dogs with visceral leishmaniasis and on the ability of LMA to eliminate parasites from this tissue. Dogs naturally infected with Leishmania chagasi received 4 intravenous doses of either LMA (6.5 mg antimony/kg body weight, N = 9), or empty liposomes (at the same lipid dose as LMA, N = 9) at 4-day intervals. A third group of animals was untreated (N = 8). Before each administration and at different times after treatment, bone marrow was obtained and analyzed for antimony level (LMA group) by electrothermal atomic absorption spectrometry, and for the presence of Leishmania parasites (all groups). There was a significant increase of antimony concentration from 0.76 µg/kg wet organ (4 days after the first dose) to 2.07 µg/kg (4 days after the fourth dose) and a half-life of 4 days for antimony elimination from the bone marrow. Treatment with LMA significantly reduced the number of dogs positive for parasites (with at least one amastigote per 1000 host cells) compared to controls (positive dogs 30 days after treatment: 0 of 9 in the LMA group, 3 of 9 in the group treated with empty liposomes and 3 of 8 in the untreated group). However, complete elimination of parasites was not achieved. In conclusion, the present study showed that multiple dose treatment with LMA was effective in improving antimony levels in the bone marrow of dogs with visceral leishmaniasis and in reducing the number of positive animals, even though it was not sufficient to achieve complete elimination of parasites.
Resumo:
Ureases are enzymes from plants, fungi and bacteria that catalyze the hydrolysis of urea to form ammonia and carbon dioxide. While fungal and plant ureases are homo-oligomers of 90-kDa subunits, bacterial ureases are multimers of two or three subunit complexes. We showed that some isoforms of jack bean urease, canatoxin and the classical urease, bind to glycoconjugates and induce platelet aggregation. Canatoxin also promotes release of histamine from mast cells, insulin from pancreatic cells and neurotransmitters from brain synaptosomes. In vivo it induces rat paw edema and neutrophil chemotaxis. These effects are independent of ureolytic activity and require activation of eicosanoid metabolism and calcium channels. Helicobacter pylori, a Gram-negative bacterium that colonizes the human stomach mucosa, causes gastric ulcers and cancer by a mechanism that is not understood. H. pylori produces factors that damage gastric epithelial cells, such as the vacuolating cytotoxin VacA, the cytotoxin-associated protein CagA, and a urease (up to 10% of bacterial protein) that neutralizes the acidic medium permitting its survival in the stomach. H. pylori whole cells or extracts of its water-soluble proteins promote inflammation, activate neutrophils and induce the release of cytokines. In this paper we review data from the literature suggesting that H. pylori urease displays many of the biological activities observed for jack bean ureases and show that bacterial ureases have a secretagogue effect modulated by eicosanoid metabolites through lipoxygenase pathways. These findings could be relevant to the elucidation of the role of urease in the pathogenesis of the gastrointestinal disease caused by H. pylori.
Resumo:
Autoimmune diseases constitute a heterogeneous group of conditions commonly treated with anti-inflammatory, immunosuppressant and immunomodulating drugs, with satisfactory results in most cases. Nevertheless, some patients become resistant to conventional therapy. The use of high doses of drugs in such cases results in the need for bone marrow reconstitution, a situation which has stimulated research into the use of hematopoietic stem cells in autoimmune disease therapy. Stem cell transplantation in such diseases aims to destroy the self-reacting immune cells and produce a new functional immune system, as well as substitute cells for tissue damaged in the course of the disease. Significant results, such as the reestablishment of tolerance and a decrease in the recurrence of autoimmune disease, have been reported following stem cell transplantation in patients with autoimmune disease in Brazil and throughout the world. These results suggest that stem cell transplantation has the potential to become an important therapeutic approach to the treatment of various autoimmune diseases including rheumatoid arthritis, juvenile idiopathic arthritis, systemic lupus erythematosus, multiple sclerosis, systemic sclerosis, Crohn's disease, autoimmune blood cytopenias, and type I diabetes mellitus.
Resumo:
Type 2 diabetes increases the risk of cardiovascular mortality and these patients, even without previous myocardial infarction, run the risk of fatal coronary heart disease similar to non-diabetic patients surviving myocardial infarction. There is evidence showing that particulate matter air pollution is associated with increases in cardiopulmonary morbidity and mortality. The present study was carried out to evaluate the effect of diabetes mellitus on the association of air pollution with cardiovascular emergency room visits in a tertiary referral hospital in the city of São Paulo. Using a time-series approach, and adopting generalized linear Poisson regression models, we assessed the effect of daily variations in PM10, CO, NO2, SO2, and O3 on the daily number of emergency room visits for cardiovascular diseases in diabetic and non-diabetic patients from 2001 to 2003. A semi-parametric smoother (natural spline) was adopted to control long-term trends, linear term seasonal usage and weather variables. In this period, 45,000 cardiovascular emergency room visits were registered. The observed increase in interquartile range within the 2-day moving average of 8.0 µg/m³ SO2 was associated with 7.0% (95%CI: 4.0-11.0) and 20.0% (95%CI: 5.0-44.0) increases in cardiovascular disease emergency room visits by non-diabetic and diabetic groups, respectively. These data indicate that air pollution causes an increase of cardiovascular emergency room visits, and that diabetic patients are extremely susceptible to the adverse effects of air pollution on their health conditions.
Resumo:
A new subtype of CD4+ T lymphocytes characterized by the production of interleukin 17, i.e., TH17 cells, has been recently described. This novel T cell subset is distinct from type 1 and type 2 T helper cells. The major feature of this subpopulation is to generate significant amounts of pro-inflammatory cytokines, therefore appearing to be critically involved in protection against infection caused by extracellular microorganisms, and in the pathogenesis of autoimmune diseases and allergy. The dynamic balance among subsets of T cells is important for the modulation of several steps of the immune response. Disturbances in this balance may cause a shift from normal immunologic physiology to the development of immune-mediated disorders. In autoimmune diseases, the fine balance between the proportion and degree of activation of the various T lymphocyte subsets can contribute to persistent undesirable inflammatory responses and tissue replacement by fibrosis. This review highlights the importance of TH17 cells in this process by providing an update on the biology of these cells and focusing on their biology and differentiation processes in the context of immune-mediated chronic inflammatory diseases.
Resumo:
The use of positive end-expiratory pressure (PEEP) or lung recruitment maneuvers (RM) to improve oxygenation in acute respiratory distress syndrome (ARDS) is used but it may reduce cardiac output (CO). Intermittent PEEP may avoid these complications. Our objective was to determine if variable PEEP compared with constant PEEP is capable of maintaining arterial oxygenation and minimizing hemodynamic alterations with or without RM. Eighteen dogs with ARDS induced by oleic acid were randomized into three equal groups: group 1, low variable PEEP; group 2, high variable PEEP, and group 3, RM + high variable PEEP. All groups were submitted to constant PEEP, followed by variable PEEP (PEEP was increased from 5 to 10 cmH2O in group 1, and from 5 to 18 cmH2O in the other two groups). PaO2 was higher in group 3 (356.2 ± 65.4 mmHg) than in group 1 (92.7 ± 29.7 mmHg) and group 2 (228.5 ± 72.4 mmHg), P < 0.05. PaO2 was maintained during variable PEEP except in group 2 (318.5 ± 82.9 at constant PEEP to 228.5 ± 72.4 at variable PEEP). There was a reduction in CO in group 3 after RM (3.9 ± 1.1 before to 2.7 ± 0.5 L·min-1·(m2)-1 after; P < 0.05), but there was not any difference between constant and variable PEEP periods (2.7 ± 0.5 and 2.4 ± 0.7 L·min-1·(m2)-1; P > 0.05. Variable PEEP is able to maintain PaO2 when performed in combination with RM in dogs with ARDS. After RM, CO was reduced and there was no relevant difference between the variable and constant PEEP periods.
Resumo:
Fifteen symptomatic and seven asymptomatic dogs infected naturally with Leishmania chagasi were examined in order to identify the presence of parasites and changes in heart and lung. Histopathological, cytological, and immunohistochemical analyses were performed on samples of heart and lung tissues. An inflammatory reaction characterized by inflammatory mononuclear, perivascular and intermuscular infiltrates was observed in both symptomatic and asymptomatic animals on histopathological analysis of the heart. In the lung, there was thickening of the alveolar septa due to congestion, edema, inflammatory infiltrate, and fibroblast proliferation. A focal reaction was observed although a diffuse reaction was present in both groups. On cytological examination, heart and lung imprints revealed amastigotes in two symptomatic animals and heart imprints were found in 1 asymptomatic dog. Immunoperoxidase staining showed amastigotes in the lung and heart of only 1 of 6 symptomatic animals examined. Within the ethical principles and limits of this research, it can be inferred that the study of heart and lung alterations in canine visceral leishmaniasis is increasingly important for understanding the problem related to humans. Dogs with visceral leishmaniasis were a good experimental model, since infection was caused by the same agent and the animals developed clinical, pathological and immunological alterations similar to those observed in humans.
Resumo:
Acute leukemia is the most frequent cancer in children. Recently, a new hypothesis was proposed for the pathogenesis of childhood acute lymphoblastic leukemia (ALL). The so-called "adrenal hypothesis" emphasized the role of endogenous cortisol in the etiology of B-cell precursor ALL. The incidence peak of ALL in children between 3 to 5 years of age has been well documented and is consistent with this view. The adrenal hypothesis proposes that the risk of childhood B-cell precursor ALL is reduced when early childhood infections induce qualitative and quantitative changes in the hypothalamus-pituitary-adrenal axis. It suggests that the increased plasma cortisol levels would be sufficient to eliminate all clonal leukemic cells originating during fetal life. Because Brazil is a continental and tropical country, the exposure to infections is diversified with endemic viral and regionally non-viral infections, with some characteristics that support the recent adrenal hypothesis. Here we discuss this new hypothesis in terms of data from epidemiological studies and the possible implications of the diversity of infections occurring in Brazilian children.
Resumo:
The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.
Resumo:
Our objective was to compare the pattern of organ dysfunctions and outcomes of critically ill patients with systemic lupus erythematosus (SLE) with patients with other systemic rheumatic diseases (SRD). We studied 116 critically ill SRD patients, 59 SLE and 57 other-SRD patients. The SLE group was younger and included more women. Respiratory failure (61%) and shock (39%) were the most common causes of ICU admission for other-SRD and SLE groups, respectively. ICU length-of-stay was similar for the two groups. The 60-day survival adjusted for the groups’ baseline imbalances was not different (P = 0.792). Total SOFA scores were equal for the two groups at admission and during ICU stay, although respiratory function was worse in the other-SRD group at admission and renal and hematological functions were worse in the SLE group at admission. The incidence of severe respiratory dysfunction (respiratory SOFA >2) at admission was higher in the other-SRD group, whereas severe hematological dysfunction (hematological SOFA >2) during ICU stay was higher in the SLE group. SLE patients were younger and displayed a decreased incidence of respiratory failure compared to patients with other-SRDs. However, the incidences of renal and hematological failure and the presence of shock at admission were higher in the SLE group. The 60-day survival rates were similar.
Resumo:
Pain and sleep share mutual relations under the influence of cognitive and neuroendocrine changes. Sleep is an important homeostatic feature and, when impaired, contributes to the development or worsening of pain-related diseases. The aim of the present review is to provide a panoramic view for the generalist physician on sleep disorders that occur in pain-related diseases within the field of Internal Medicine, such as rheumatic diseases, acute coronary syndrome, digestive diseases, cancer, and headache.