60 resultados para wavelet neural nets
Resumo:
The study assessed the operational feasibility and acceptability of insecticide-treated mosquito nets (ITNs) in one Primary Health Centre (PHC) in a falciparum malaria endemic district in the state of Orissa, India, where 74% of the people are tribes and DDT indoor residual spraying had been withdrawn and ITNs introduced by the National Vector Borne Disease Control Programme. To a population of 63,920, 24,442 ITNs were distributed free of charge through 101 treatment centers during July-August 2002. Interview of 1,130, 1,012 and 126 respondents showed that the net use rates were 80%, 74% and 55% in the cold, rainy and summer seasons, respectively. Since using ITNs, 74.5-76.6% of the respondents observed reduction of mosquito bites and 7.2-32.1% reduction of malaria incidence; 37% expressed willingness to buy ITNs if the cost was lower and they were affordable. Up to ten months post-treatment, almost 100% mortality of vector mosquitoes was recorded on unwashed and washed nets (once or twice). Health workers re-treated the nets at the treatment centers eight months after distribution on a cost-recovery basis. The coverage reported by the PHC was only 4.2%, mainly because of unwillingness of the people to pay for re-treatment and to go to the treatment centers from their villages. When the re-treatment was continued at the villages involving personnel from several departments, the coverage improved to about 90%.Interview of 126 respondents showed that among those who got their nets re-treated, 81.4% paid cash for the re-treatment and the remainder were reluctant to pay. Majority of those who paid said that they did so due to the fear that if they did not do so they would lose benefits from other government welfare schemes. The 2nd re-treatment was therefore carried out free of charge nine months after the 1st re-treatment and thus achieved coverage of 70.4%. The study showed community acceptance to use ITNs as they perceived the benefit. Distribution and re-treatment of nets was thus possible through the PHC system, if done free of charge and when personnel from different departments, especially those at village level, were involved.
Resumo:
Observational studies in the Indian subcontinent have shown that untreated nets may be protective against visceral leishmaniasis (VL). In this study, we evaluated the effect of untreated nets on the blood feeding rates of Phlebotomus argentipes as well as the human blood index (HBI) in VL endemic villages in India and Nepal. The study had a "before and after intervention" design in 58 households in six clusters. The use of untreated nets reduced the blood feeding rate by 85% (95% CI 76.5-91.1%) and the HBI by 42.2% (95% CI 11.1-62.5%). These results provide circumstantial evidence that untreated nets may provide some degree of personal protection against sand fly bites.
Resumo:
Insecticide-treated nets provide a reduction in human-vector contact through physical barrier, mortality and/or repellent effects that protect both users and non-users, thereby protecting the wider community from vector-borne diseases like malaria. Long-lasting insecticide-treated nets (LLINs) are the best alternative. This study evaluated the bioefficacy of LLINs PermaNet® 2.0 and Olyset® under laboratory conditions with Anopheles albimanus. The laboratory strain was evaluated for insecticide susceptibility with selected insecticides used for malarial control. Regeneration time and wash resistance were evaluated with the standard bioassay cone technique following WHO guidelines. Heat assistance was used for Olyset® nets; the nets were exposed to four different temperatures to speed the regeneration process. The regeneration study of PermaNet® 2.0 showed that efficacy was fully recovered by 24 h after one and three washes and wash resistance persisted for 15 washes. Regeneration of Olyset® nets was not observed for nets washed three times, even with the different temperature exposures for up to seven days. Thus, for Olyset® the wash resistance evaluation could not proceed. Differences in response between the two LLINs may be associated with differences in manufacturing procedures and species response to the evaluated LLINs. PermaNet® 2.0 showed higher and continuous efficacy against An. albimanus.
Resumo:
Nerve biopsy examination is an important auxiliary procedure for diagnosing pure neural leprosy (PNL). When acid-fast bacilli (AFB) are not detected in the nerve sample, the value of other nonspecific histological alterations should be considered along with pertinent clinical, electroneuromyographical and laboratory data (the detection of Mycobacterium leprae DNA with polymerase chain reaction and the detection of serum anti-phenolic glycolipid 1 antibodies) to support a possible or probable PNL diagnosis. Three hundred forty nerve samples [144 from PNL patients and 196 from patients with non-leprosy peripheral neuropathies (NLN)] were examined. Both AFB-negative and AFB-positive PNL samples had more frequent histopathological alterations (epithelioid granulomas, mononuclear infiltrates, fibrosis, perineurial and subperineurial oedema and decreased numbers of myelinated fibres) than the NLN group. Multivariate analysis revealed that independently, mononuclear infiltrate and perineurial fibrosis were more common in the PNL group and were able to correctly classify AFB-negative PNL samples. These results indicate that even in the absence of AFB, these histopathological nerve alterations may justify a PNL diagnosis when observed in conjunction with pertinent clinical, epidemiological and laboratory data.
Resumo:
O conhecimento do valor da erosividade da chuva (R) de determinada localidade é fundamental para a estimativa das perdas de solo feitas a partir da Equação Universal de Perdas de Solo, sendo, portanto, de grande importância no planejamento conservacionista. A fim de obter estimativas do valor de R para localidades onde este é desconhecido, desenvolveu-se uma rede neural artificial (RNA) e analisou-se a acurácia desta com o método de interpolação "Inverso de uma Potência da Distância" (ID). Comparando a RNA desenvolvida com o método de interpolação ID, verificou-se que a primeira apresentou menor erro relativo médio na estimativa de R e melhor índice de confiança, classificado como "Ótimo", podendo, portanto, ser utilizada no planejamento de uso, manejo e conservação do solo no Estado de São Paulo.
Resumo:
Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP)-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.
Resumo:
Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.
Resumo:
Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.
Resumo:
O objetivo deste trabalho foi definir a resolução espacial mais apropriada para representar a variabilidade da elevação, declividade, curvatura em perfil e índice de umidade topográfica de um terreno, por meio de avaliações com a transformada wavelet. Os dados utilizados no estudo têm sua origem em três transectos de 27 km, posicionados em áreas do Planalto, Rebordo do Planalto e Depressão Central na região central do Estado do Rio Grande do Sul. As variáveis - elevação, declividade, curvatura em perfil e índice de umidade topográfica - foram derivadas de um modelo digital de elevação Topodata com resolução de 30 m. A avaliação da resolução com a máxima variabilidade foi realizada pela aplicação da wavelet-mãe, denominada Morlet. Os resultados foram analisados a partir do isograma e do escalograma dos coeficientes wavelet e indicaram que sensores remotos com resolução espacial próxima a 32 e 40 m podem ser utilizados em pesquisas que considerem os atributos de terreno, como declividade, curvatura em perfil e índice de umidade topográfica, ou, ainda, fenômenos ambientais correlacionados a eles. No entanto, não foi possível estabelecer um valor conclusivo para a resolução espacial mais adequada para a variável elevação.
Resumo:
ABSTRACT The present study aimed at evaluating the heterotic group formation in guava based on quantitative descriptors and using artificial neural network (ANN). For such, we evaluated eight quantitative descriptors. Large genetic variability was found for the eight quantitative traits in the 138 genotypes of guava. The artificial neural network technique determined that the optimal number of groups was three. The grouping consistency was determined by linear discriminant analysis, which obtained classification percentage of the groups, with a value of 86 %. It was concluded that the artificial neural network method is effective to detect genetic divergence and heterotic group formation.
Estudo comparativo sobre filtragem de sinais instrumentais usando transformadas de Fourier e Wavelet
Resumo:
A comparative study of the Fourier (FT) and the wavelet transforms (WT) for instrumental signal denoising is presented. The basic principles of wavelet theory are described in a succinct and simplified manner. For illustration, FT and WT are used to filter UV-VIS and plasma emission spectra using MATLAB software for computation. Results show that FT and WT filters are comparable when the signal does not display sharp peaks (UV-VIS spectra), but the WT yields a better filtering when the filling factor of the signal is small (plasma spectra), since it causes low peak distortion.
Resumo:
Signal processing methods based on the combined use of the continuous wavelet transform (CWT) and zero-crossing technique were applied to the simultaneous spectrophotometric determination of perindopril (PER) and indapamide (IND) in tablets. These signal processing methods do not require any priory separation step. Initially, various wavelet families were tested to identify the optimum signal processing giving the best recovery results. From this procedure, the Haar and Biorthogonal1.5 continuous wavelet transform (HAAR-CWT and BIOR1.5-CWT, respectively) were found suitable for the analysis of the related compounds. After transformation of the absorbance vectors by using HAAR-CWT and BIOR1.5-CWT, the CWT-coefficients were drawn as a graph versus wavelength and then the HAAR-CWT and BIOR1.5-CWT spectra were obtained. Calibration graphs for PER and IND were obtained by measuring the CWT amplitudes at 231.1 and 291.0 nm in the HAAR-CWT spectra and at 228.5 and 246.8 nm in BIOR1.5-CWT spectra, respectively. In order to compare the performance of HAAR-CWT and BIOR1.5-CWT approaches, derivative spectrophotometric (DS) method and HPLC as comparison methods, were applied to the PER-IND samples. In this DS method, first derivative absorbance values at 221.6 for PER and 282.7 nm for IND were used to obtain the calibration graphs. The validation of the CWT and DS signal processing methods was carried out by using the recovery study and standard addition technique. In the following step, these methods were successfully applied to the commercial tablets containing PER and IND compounds and good accuracy and precision were reported for the experimental results obtained by all proposed signal processing methods.
Resumo:
This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.