47 resultados para visible pedagogies
Resumo:
Introduction In addition to the common alterations and diseases inherent in the aging process, elderly persons with a history of leprosy are particularly vulnerable to dependence because of disease-related impairments. Objective determine whether physical impairment from leprosy is associated with dependence among the elderly. Methods An analytical cross-sectional study of elderly individuals with a history of leprosy and no signs of cognitive impairment was conducted using a database from a former leprosy colony-hospital. The patients were evaluated for dependence in the basic activities of daily living (BADL) and instrumental activities of daily living (IADL), respectively) and subjected to standard leprosy physical disability grading. Subsequently, descriptive and univariate analyses were conducted, the latter using Pearson's chi-squared test. Results A total of 186 elderly persons were included in the study. Of these individuals, 53.8% were women, 49.5% were older than 75 years of age, 93% had four or less years of formal education, 24.2% lived in an institution for the long-term care of the elderly (ILTC), and 18.3% had lower limb amputations. Among those evaluated, 79.8% had visible physical impairments from leprosy (grade 2), 83.3% were independent in BADL, and 10.2% were independent in IADL. There was a higher impairment grade among those patients who were IADL dependent (p=0.038). Conclusion s: The leprosy physical impairment grade is associated with dependence for IADL, creating the need for greater social support and systematic monitoring by a multidisciplinary team. The results highlight the importance of early diagnosis and treatment of leprosy to prevent physical impairment and dependence in later years.
Resumo:
Since 1958, we have studied experimental Chagas' disease (CD) by subcutaneous inoculation of 1,000 blood forms of Trypanosoma cruzi (Y strain) in Balb/C. mice. Evolution of parasitemia remained constant, beginning on the 5th and 6th day of the disease, increasing progressively, achieving a maximum on about the 30th day. After another month, only a few forms were present, and they disappeared from the circulation after the third month, as determined from direct examination of slides and the use of a Neubauer Counting Chamber. These events coincided with the appearance of amastigote nests in the tissues (especially the cardiac ones), starting the first week, and following the Gauss parasitemia curve, but they were not in parallel until the chronic stage. In 1997, we began to note the following changes: Parasites appeared in the circulation during the first week and disappeared starting on the 7th day, and there was a coincident absence of the amastigote nests in the tissues. A careful study verified that young forms in the evolutionary cycle of T. cruzi (epi + amastigotes) began to appear alongside the trypomastigotes in the circulation on the 5th and 7th post-inoculation day. At the same time, rounded, oval, and spindle shapes were seen circulating through the capillaries and sinusoids of the tissues, principally of the hematopoietic organs. Stasis occurs because the diameter of the circulating parasites is greater than the vessels, and this makes them more visible. Examination of the sternal bone marrow revealed young cells with elongated forms and others truncated in the shape of a "C" occupying the internal surface of the blood cells that had empty central portions (erythrocytes?). We hypothesize that there could be a loss of virulence or mutation of the Y strain of Trypanosoma cruzi.
Resumo:
OBJECTIVE: To study the arrangement of the myocardial fiber bundles at the pulmonary venous left atrial junction in patients with pulmonary hypertension, and to discuss the pathophysiological importance of this element in the etiology of acute pulmonary edema. METHODS: We obtained 12 hearts and their pulmonary vein extremities from postmortem examinations of patients with the anatomicopathological diagnosis of acute pulmonary edema. The specimens, which had no grossly visible morphological cardiac alterations, were fixed in 10% formalin, and the muscular arrangement of the pulmonary venous left atrial junctions was analyzed. This material was then isolated, embedded in paraffin, underwent serial cutting (50 µm of thickness), and was stained with Azam's trichrome. RESULTS: We observed in our specimens that: a) the myocardial fiber bundles that originate in the atrial wall and involve the openings of the pulmonary veins were fewer than those observed in healthy material; b) the myocardial fiber bundles that extend into the pulmonary veins were shorter than those found in material originating from individuals with no pulmonary hypertension. CONCLUSION: Anatomical changes that result in a reduction in the amount of myocardial fiber bundles in the pulmonary venous left atrial junction, isolated or associated with other factors, may be the cause of disorders in pulmonary circulation, leading to an increase in pulmonary venous pressure, and, consequently, to acute pulmonary edema.
Resumo:
The male of Eneoptera surinamensis (Orthoptera-Eneopteridae) is provided with 9 chromosomes, that is, with 3 pairs of autosomes and 3 sex chromosomes. Spermatogonia. - The autosomes of the spermatogonia are of the same size and U-shaped. One of the sex chromosomes approximately equalling the autosomes in size is telocentric, while the other two are much larger and V-shaped. One of the latter is smaller than the other. The sex chromosomes as showed in Figs. 1 and 2 are designated by X, Yl and Y2, X being the larger V, Yl the smaller one and Y2 the rod-shaped. Primary spermatocytes. - Before the growth period of the spermatocytes all the three sex chromosomes are visible in a state of strong heteropycnosis. X is remarkable in this stage in having two long arms well separated by a wide commissural segment. (Figs. 4, 5 and 6). During the growth period Y2 disappears, while X and Yl remain in a condensed form until metaphase. These may be separated from one another or united in the most varied and irregular manner. (Fig. 7 to 12). In the latter case the segments in contact seem to be always different so that we cannot recognize any homology of parts in the sense os genetics. At diplotene Y2 reappears together with the autosomal tetrads. X and Yl may again be seen as separate or united elements. (Figs. 13 and 14). At later diakinesis and metaphase the three sex chromosomes are always independent from each other, Y2 being typically rod-shaped, X and Yl V-shaped, X being a little larger than Yl. (Fig. 15 to 18). At metaphase the three condensed tetrads go to the equatorial plane, while the sex chromosomes occupy any position at both sides of this plane. In almost all figures which could be perfectly analysed X appeared at one side of the autosomal plate an Yl together with Y2 far apart at the other side. (Figs. 16 and 18). Only a few exception have been found. (Figs. 17 and 19). At anaphase X goes in precession to one pole, Yl and Y2 to the other (Figs. 20 and 21). As it is suggested by the few figures in which a localization of the sex chromosomes different from the normal has been observed, the possibility of other types of segregation of these elements cannot be entirely precluded. But, if this does happen, the resulting gametes should be inviable or give inviable zygotes. Early in anaphase autosomes and sex chromosomes divide longitudinally, being maintained united only by the kinetochore. (Figs. 20 and 21). At metaphase the three sex chromosomes seem to show no special repulsion against each other, X being found in the proximity of Yl or Y2 indifferently. At anaphase, however, the evidences in hand point to a stronger repulsion between X on the one side and both Ys on the other, so that in spite of the mutual repulsion of the latter they finish by going to the same pole. Secondary spermatocytes. - At telophase of the primary spermatocytes all the chromosomes enter into distension without disappearing of view. A nuclear membrane is formed around the chromosomes. All the chromosomes excepting Y2 which has two arms, are four-branched. (Fig. 22). Soon the chromosomes enter again into contraction giving rise to the secondary metaphase plate. Secondary spermatocytes provided as expected with four and five chromosomes are abundantly found. (Figs. 23 and 24). In the former all chromosomes are X-shaped while in the latter there is one which is V-shaped. This is the rod- shaped Y2. In the anaphase of the spermatocytes with four chromosomes all the chromosomes are V-shaped, one of them (X) being much larger than the others. In those with five there is one rod-shaped chromosome (Y2). (Fig. 25), Spermatids. Two classes of spermatids are produced, one with X and other with Yl and Y2. All the autosomes as well as Y2 soon enter into solution, X remaining visible for long time in one class and Yl in the other. (Figs. 26 and 27). Since both are very alike at this stage, one cannot distinguish the two classes of spermatids. Somatic chromosomes in the famale. - In the follicular cells of the ovary 8 chromosomes were found, two of which are much larger than the rest. (Figs. 29 and 30). These are considered as being sex chromosomes. CONCLUSION: Eneoptera surinamensis has a new type of sex-determining mechanism, the male being X Yl Y2 and the female XX. The sex chromosomes segregate without entering into contact at metaphase or forming group. After a review of the other known cases of complex sex chromosome mechanism the author held that Eneoptera is the unique representative of a true determinate segregation of sex chromosomes. Y2 behaving as sex chromosome and as autosome is considered as representing an intermediary state of the evolution of the sex chromosomes.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Breve notícia sôbre a espermatogênese de Lutosa brasiliensis Brunner (Tettigoniodea-Stenopelmatidae)
Resumo:
Lutosa brasiliensis, an Orthopteran Tettigonioidean belonging to the family Stenopelmatidae is referred to in this paper The spermatogonia are provided with 15 chromosomes, that is, 7 pairs of autosomes and a single sex chromosome. One pair of autosomes is much larger than the rest, two pairs are of median sized elements, and four pairs are of small ones. The daughter sex chromosomes show at anaphase great difficulty in reaching the poles, being left for a long while in the region of the equator where they are seen stretched one after the other on the same line or lying side by side in different positions. When the spermatogonium divides each daughter cell gets passively its sex chromosome. Though slowly, the sex chromosome finishes by beins enclosed in the nucleus. Its behavior may be attributed to a very weak kinetic activity of the centromere. In view of se pronouced an inertness of the sex chromosomes, two things may be expected : primary spermatocyte nuclei with two sex chromosomes, and primary spermatocytes with the sex chromosome lying outside the nucleus. Both situations have been discovered. The latter, together with the delay of the spermatogonial sex chromosome in reaching the poles suggested to the anther the mechanism which might have given origin to the cases in which the sex chromosome normally does not enter the nucleus to rejoin the autosomes, remaning outside in its own nucleus. It may well be supposed that accidents like that found in the present individual have turned to be a normal event in the course of the evolution of some species. Trie primary spermatocytes are provided with chromatoid bodies which remain visible all over the whole history of the cells and pass to one of the resulting secondary spermatocytes, the larger of them being found later in the area occupied by the tails of the spermatozoa. No relation of these bodies to nucleoli con?d be established. Pachytene and diplotene nuclei are normal Metaphase nuclei show 7 autosomal tetrads, one of which being much larger than the rest. At this stage the chromosomes have a pronounced tendency to form clumps. Even when they are separated from each other they generally appear competed by chromosomal substance. The sex chromosome Hes always in one of the poles, being enclosed in the nucleus formed there. The stickness of the chromosomes can also be noted at anaphase. Telophase chromosomes distend them- selves for giving origin to secondary spermatocyte nuclei in a state comparable to a beginning prophase. As the secondary spermatocytes approach metaphase the autosomes appear entirely divided except at the kinetochore where the chromatids remain united. In the division of the secondary spermatocytes nothing else merits special reference.
Resumo:
Material: Studies were made mainly with Ascaris megalocephála Cloq. univalens and bivalens, and also with Tityus bahiensis Perty. 1) Somatic pairing of heterochromatic regions. The heterochromatic ends of the somatic chromosomes in Ascaris show a very strong tendency for unspecifical somatic pairing which may occur between parts of different chromosomes (Figs. 1, 2, 3, 7, 10, 11, 12, 13, 14, 16, 18,), between the two ends of the same chromosome either directly (Figs. 4, 5, 7, 8, 11, 12, 13, 15, 16, 17, 18) or inversely (Fig. 8, in the arrow) and also within a same chromosomal arm (Fig. 6). 2) During the early first cleavage division the chomosomes are an isodiametric cylinder (Figs. 6, 9, 11, 13, 14). But in later metaphase the ends become club shaped (Figs. 1, 2, 3, 4, 5, 7, 10) which is interpreted as the beginning of migration of chromatic substance from the central euchromatic region towards the heterochromatic regions. This migration becomes more and accentuated in anaphase (Figs. 19, 22, 23) and in the vegetative cells where euchromatic region looses more and more staing power, especially in the intersititial zones between the individual small spherical chromosomes into which the euchromatic region desintegrates. The emigrated chromatin material is finally eliminated with the heterochromatic chromosome ends (Fig. 23 and 24). 3) It seems a general rule that during mitotic anaphase all chromosomes with diffuse or multiple spindle fiber attachement (Ascaris, Tityus, Luzula, Steatococcus, Homoptera and Heteroptera in general) move to the poles in the form of an U with precedence of the chromosomal ends. In Ascaris, the heterocromatic regions are pulled passively towards the poles and only the euchromatic central portion may be U-shaped (Fig. 19, 22, 25). While in the other species this U-shape is perfect since the beginning of anaphase, giving the impression that movement towards the poles begins at both ends of a chromosome simultaneously, this is not the case in Ascaris. There the euchromatic region is at first U-shaped, passing then to form a straight or zig-zag line and becoming again U-shaped during late anaphase. This is explained by the fact that the ends of the euchromatic regions have to pull the weight of the passive heterochromatic portions. 4) While it is generally accepted that, during first meio-tic division untill second anaphase, all attachement regions remain either undivided or at least united closely, this is not the case in chromosomes with diffused or multiple attachment. Here one clearly sees in all cases so far studied four parallel chromatids at first metaphase. In Luzula and Tityus (for Tityus all figs. 26 to 31) this division is allready quite clear in paraphase (pro-metaphase) and it cannot be said wether in other species the division in sister chromatids is allready present, but not visible at this stage. During first anaphase the sister chromatids of Titbits remain more or less in contact, while in Luzula and especially in Ascaris they are quite separated. Thus one can count in late anaphase or telophase of Ascaris megalocephala bivalens, nearly allways, four separate chromosomes near each pole, or a total of eight chromatids per division figure (Figs. 35, 36, 37, 38, 39, 40, 41).
Resumo:
Irish potato tubers imported from Holland and Germany were planted at the Instituto Agronômico Experiment Station, Campinas, in April, 1955. At digging time, in July, 1955, the tubers were found to be injured by nematodes belonging to the genus Ditylenchus. No visible symptoms were found on the plants during the growing season, since the nematodes did not attack the stems. However, prevailing weather conditions from April to July were not favorable for nema activities, with low temperature and rain precipitation. Therefore, it does not seem safe to assume that, as a rule, the nemas do not attack buds and stems, for further observations may reveal such an occurrence, as it has been reported in the literature. The injury was characterized by spots consisting of decaying brown tissue, the nematodes being found mainly between this and the uninjured tissue. Larvae and adults occurred simultaneously. Fourteen different potato varieties were attacked by the nematodes, the percentage of disfigured tubers ranging from 6 (vars. Irene, Barima and Tedria) to 38 (var. Stamm 456). Studies en the morphology cf the parasites disclosed that two different Ditylenchus forms were present, with Apheten-chus sp. and Aphelenchoides sp. associated with them. The writers have not yet drawn a final conclusion about the identification of the Ditylenchi. However, it was clearly seen that no form can be identified either with D. dipsaci or with D. destructor. Both forms have lateral fields made up of 6 incisures, what separates them from D. dipsaci. On the other hand, measurements as well as some details in the organization of the oesophagus make the identification with D. destructor quite impossible. As far as the origin of the parasites is concerned, the fact that they could not be determined either as D. dipsaci or as D. destructor emphasizes the possibility of being two native species, not introduced with the tubers imported.
Resumo:
A trial was carried out on an eight old coffee plantation with visible zinc problems. The plantation was situated nearly the city of Jaú (22º30'S, 48º30'W). State of São Paulo, Brazil. The soil is classified as medium texture Oxisol of low base saturation (Latossol Vermelho Amarelo - fase arenosa). The pulverization program started in november 1977, followed in march and July 1978 (heavy harvest) and ended in march and July 1979 (light harvest). Is should be mentioned that a well reconized characteristic of arábica coffe is its habit of biennial bearing, a very heavy harvest is most often followed by a light load the next year. The following treatments and amounts of chemicals per cova hole (4 trees) were tested in accordance with a random block design: 1. 1 g of zinc (zinc sulphate, 0.5%) 2. 3 g of nitrogen (urea, 1.3%) 3. 1 g of zinc + 3 g of nitrogen (zinc sulphate 0.5% + urea 1.3%) 4. 0.25 g, 0.50 g, 1.00 g, 2.00 g of zinc plus 0.75 g, 1.50 g, 3.00 g and 6.00 of nitrogen (correspondent to NZN* 15-0-0-5 as 0.75%, 1-5%, 3.0% and 6.0% by v/v). Foliar absorption data were obtained by collecting the 3rd and 4th pairs of the coffee leaves and analysed them for N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn. The main results may be summarized as follows: 1. The maximum calculated yields of clean coffee were obtained by the applications of 5.84 1 of NZN (1.13%) per hectare. 2. The applications of zinc sulphate (0.5%) and urea (1.3%) together or separate did not affected the coffee bean production. 3. The applications of 15.0 1 of NZN per hectare reduced the coffee yields. 4. Leaf damages and burning symptoms were observed by the applications of urea (1.3%) plus zinc sulphate (0.5%) and larger doses than 7.5 1 of NZN per hectare. 5. Leaf tissue analysis show that the concentrations of the elements were affecred by the age of the leaves and by the yields of the coffee trees. 6. The applications of increasing doses of NZN causes an increase in the concentration of zinc, manganese and boron in the leaves and decreased the concentration in calcium and potassium the leaves. 7. The concentration of zinc in the leaves associated with the heavy harvest, in July, was 70.0 ppm.
Resumo:
In an apiary composed of 14 hygienic and 7 non-hygienic colonies of Apis mellifera Linnaeus, 1758 the presence of visible and capped mummies was recorded, one hygienic and 4 non-hygienic colonies showed symptoms of chalkbrood. Twenty-eight days after a massive contamination of the colonies with pollen patties containing Ascosphaera apis Olive & Spiltoir, 1955, the situation was almost identical to that at the beginning: the same 4 non-hygienic colonies still were infected and one hygienic colony that was healthy became infected. The high proportion of hygienic colonies that eliminated the disease symptoms suggests that they could maintain themselves healthy in spite of the presence of colonies with chalkbrood in the apiary.
Resumo:
Definite hyperplasia of cells occurs in the skin lesions of the infectious myxoma of rabbits, more visible in such stages in which the intercellular basophilic substance is rather scanty (fig. 2). The increase in number of cells is the result of simplified forms of mitosis (modified type of mitosis, pseudoamitosis) which might readily be mistaken for amitosis in their final stages. Budding (figs. 20, 28, 29, 30) as well as constriction of the nucleus (figs. 18, 31, 32), and the formation of giant-cells (figs. 33, 34) are not rare. During the entire process the nuclear membrane does not desintegrate as in typical mitosis. Division of the cytoplasm following division of the nucleus has been demonstrated (fig. 17). Typical mitosis is practically absent. The cells which undergo hyperplasia present remarkable changes in their dimension, shape, and structure. The nucleus and cell-body are considerably enlarged (figs. 6, 7, 8). The shape of the nucleus is modified (figs. 8, 10, 15). Hypertrophy of nuclein, either as an intranuclear network (spireme?, figs. 9, 23), or in the form conspicuous, deeply staining masses which appear not to be homogeneous but to be composed of small particles closely clumped ("mulberries"?, figs. 12, 13, 14, 25, 26) occurs in most cells. While some of these pictures are probably related to necrosis of the cells as started by most of the previous workers, it is lekely that some of them may represent developmental stages of the modified mitosis (pseudoamitosis) here reported. In fact, fine cytological details not ordinarily preserved in necrotic cells (figs. 35, 36, 37) may be demonstrated in the socalled myxoma-cells subtted to approved cytological methods of study (fixation in B-15 and P. F. A.-3, staining in iron-hematoxylin).
Resumo:
The author studied, the horizontal and vertical distribution of most common part of the flora and fauna of the bay of Guanabara at Rio de Janeiro. In this paper the eulittoral, poly, meso and oligohaline regions were localised and studied; and the first chart of its distribution was presented (fig. 2). The salinity of superficial waters was established through determinations based on 30 trips inside the buy for collecting biological materials. Some often 409 determinations which were previous reported together with the present ones served for the eleboration of a salinity map of the bay of Guanabara (fig. 1). This map of fig. 2 shows the geographic locations of the water regions. EULITTORAL WATER REGIME Fig. 3 shows the diagram scheme of fauna and flora of this regime. Sea water salinity 34/1.000, density mean 1.027, transparent greenish waters, sea coast with moderate bursting waves. Limpid sea shore with white sand, gneiss with the big barnacle Tetraclita squamosa var. stalactifera (Lam. Pilsbry. Vertical distributions: barna¬cles layers with a green region in which are present the oyster Ostrea pa-rasitica L., the barnacles Tetraclita, Chthamalus, Balanus tintinnabulum var. tintinnabulum (L.) e var. antillensis Pilsbry in connection with several mollusca and the sea beatle Isopoda Lygia sp. Covered by water and exposed to air by the tidal ritms, there is a stratum of brown animals that is the layer of mussels Mytilus perna L., with others brown and chestnut animals : the Crustacea Pachygrapsus, the little crab Porcellana sp., the stone crab Me-nippe nodifrons Stimpson, the sea stars Echinaster brasiliensis (Mull. & Tr.), Astropecten sp. and the sea anemones Actinia sp. Underneath and never visible there is a subtidal region with green tubular algae of genus Codium and amidst its bunches the sea urchin Lycthchinus variegatus (Agass.) walks and more deeply there are numerous sand-dollars Encope emarginata (Leske). The microplancton of this regime is Ceratiumplancton. POLYHALINE WATER REGIMB Water almost sea water, but directly influenced by continental lands, with rock salts dissolved and in suspension. Salinity: 33 to 32/1.000. This waters endure the actions of the popular nicknamed «water of the hill» (as the waters of mesohaline and oligohaline regimes), becoming suddenly reddish during several hours. That pheno¬menon returns several times in the year and come with great mortality of fishes. In these waters, according to Dr. J. G. FARIA there are species of Protozoa : Peridinea, the Glenoidinium trochoideum St., followed by its satellites which he thinks that they are able to secret toxical substances which can slaughter some species of fishes. In these «waters of the hill» was found a species of Copepoda the Charlesia darwini. In August 1946 the west shore of the Guanabara was plenty of killed fishes occupying a area of 8 feet large by 3 nautical miles of lenght. The enclosure for catching fishes in the rivers mouthes presents in these periods mass dead fishes. The phenomenon of «waters of the hill» appears with the first rains after a period of long dryness. MESOHALINE WATER REGIME Fig. 4 shows the the diagramm scheme. Salt or brackish water from 30 to 17/1.000 salinity, sometimes until 10/1.000. Turbid waters with mud in suspension, chestnut, claveyous waters; shore dirty black mud without waving bursting; the waters are warmer and shorner than those of the polihaline regime. Mangrove shore with the mangrove trees : Rhizophora mangle L., Avicennia sp., Laguncularia sp., and the »cotton tree of sea» Hibiscus sp. Fauna: the great land crab «guaimú» Cardisoma guanhumi Latr., ashore in dry firm land. There is the real land crab Ucides cordatus (L.) in wetting mud and in neigh¬ bourhood of the burrows of the fiddler-crabs of genus Uca. On stones and in the roots of the Rhizophora inhabits the brightly colored mangrove-tree-crab («aratu» Portuguese nickname) Goniopsis cruentata (Latreille) and the sparingly the big oyster Ostrea rhizophorae Guild. Lower is the region of barnacles Balanus amphitrite var. communis Darwin and var. niveus Darwin; Balanus tintinnabulum var. tintinnabulum (L.) doesn't grow in this brackish water; lower is the region of Pelecipoda with prepollency of Venus and Cytherea shell-fishes and the Panopeus mud crab; there are the sea lettuce Ulva and the Gastreropod Cerithium. The Paguridae Clibanarius which lives in the empty shells of Gasteropod molluscs, and the sessile ascidians Tethium plicatum (Lesuer) appears in some seasons. In the bottom there is a black argillous mud where the «one landed shrimps» Alpheus sp. is hidden. OLIGOHALINE WATER REGIME The salinity is lower than 10/1.000. average 8/1.000. There are no barnacles and no sea-beetles Isopods of genus Lygia; on the hay of the shore there are several graminea. This brackish water pervades by mouthes of rivers and penetrates until about 3 kilometers river above. While there is some salt dissolved in water, there are some mud crabs of the genus Uca, Sesarma, Metasesarma and Chasmagnatus. The presence of floating green plants coming from the rivers in the waters of a region indicated the oligohaline waters, with low salt content because when the average of NaCl increases above 8/1.000 these plants die and become rusty colored.
Resumo:
Hansen's Bacillus: By electron microscopy this bacillus shows membrane and halo, this being more visible when sorrounding the globi or bundles of bacilli; shows, also, free granules of various sizes which were before considered as dust of the dyes; shows external granules bound with the membrane and some times branching. By phases contrast microscopy examining leproma suspensions and subcataneous lymph at 400 x we saw many free granules with intense rotatory movement; granulated bacilli with screw, skip or stroke motion, producing slow progressive motion. All such elementes are surrounded by a halo, corresponding to the classical gloea. By a patient and delayed examination we were able to see that the internal granules are motile and help the progression of the bacilli, giving the impression that the cytoplasm is liquid. By a lasting observation we could see the larger granules form prolapse, like a pseudopode and abandon the bacilli and going in very rapid rotatory movement. There are branched bacilli; there are pedunculated fred granules like comets. The addition of a drop of formol at the preparation stops all movements. Stefansky's Bacillus: Repeated examination by RCA electron microscope, type EMU-25 of fresh suspensions of rat lepromas, led us to confirm the close relationship between human and murine leprosy agents. We examined also material from carabo (Lepra bubalorum) from Java, but due to fixation, the material was unsuitable for comparative studies. The Stefansky's bacilli showed also emmbranes and halos, internal or external granules (smaller than those of Hansen's bacillus). The bacilli shaded by chromium look thicker and shorter than those of Hansen. Due to electron bombardment both, Hansen's and Stefansky's baccilli suffer considerable alterations in their structure, showing black barrs of chromatin condensation at their extremities as also in their centers. By phase microscopy the Stefansky's bacilli showed elements with 1, 2 (bipolar), 3 or more internal small granules, developing identical movements as those of Hansen. The globi seem to be non-motile but the free bacilli appearing around the globi show intense movement. At 1000 x the examination is less satisfactory than at 400 x. The addition of formol solution in the preparation suppresses all movements, even the brownian, but the material becomes more suitable for the study of static morphology of the bacilli. CONCLUSION - The electron and phases contrast microscopy of leprous material from different types and phases of the disease may explain some of the unknown aspects of the biology and morphology of the bacilli.
Resumo:
A new species of South American lymnaeid snail, Lymnaea rupestris, is described. So far it has been found only in its type-locality, Nova TeuTõnia, a village in the municipality of Seara (27° 07' S, 52° 17' W), state of Santa Catarina, Brazil. It is distinguishable, by characteristics of the shell and internal organs, from the other two lymnaeid species known to occur in the area, Lymnaea columella and L. viatrix. Its shell has 4 markedly shouldered whorls, deep suture, ovoid or rounded aperture occupying about half the length of the shell, and reaches about 6 mm in length in adults; in columella and viatrix the shell has 4-5 rounded whorls, shallow suture, and reaches over 10 mm in adults; the aperture is ovoid, occupying about half the length of the shell in viatrix, about two thirds in columella. Anatomically it is readily separated from L. columella by the shape of the ureter, straight in rupestris, with a double flexure in columella. Comparison with L. viatrix shows the following main differences: distalmost portion of the oviduct with a low, caplike lateral swelling in rupestris, with a well-developed pouch in viatrix; uterus bent abruptly caudalward in rupestris, only slightly curved rightward in viatrix; basal half of the spermathecal duct hidden by the prostate in rupestris, wholly visible or nearly so in viatrix; spermiduct sinuous and uniformly wide in rupestris, straight and gradually narrowing in viatrix; prostate more than half as long and nearly as wide as the nidamental gland, and with a slit-like lumen in cross-section in rupestris, less than half as long as and much narrower than the nidamental gland, and with an inward fold in cross-section in viatrix; penial sheath about as long and as wide as the prepuce in rupesris, shorter and narrower than the prepuce in viatrix. An important ecological characteristic of L. rupestris is its habitat on wet rocks most often outside bodies of water, although in close proximity to them. Specimens were deposited in the following malacological collections: Instituto OswaldoCruz, Rio de Janeiro; Academy of Natural Sciences, Philadelphia; Museum of Zoology, University of Michigan; and British Museum (Natural History).
Resumo:
A description of Physa cubensis Pfeiffer, 1839, based on 15 speciments collected in Havana, Cuba, is presented. The shell, measuring 9.0 x 4,8mm to 12.3 x 6.4mm, is ovate-oblong, thin, diaphanous, horncolored, shining. Spire elevated, broadly conical; protoconch distinct, roundish, reddish-brown. About five moderately shouldered, roundly convex whorls, penultimate whorl expanded; spiral striation subobsolete; growth line faint on the intermediate whorls, clearly visible on the body whorl, crowded here and there. Suture well impressed. Aperture elongated 2.05 - 2.67 (mean 2.27) times as long as the remaining length of the shell, narrow obovulate-lunate; upper half acute-angled, lower half oval, narrowly rounded at the base; outer lip sharp, inner lip completely closing the umbilical region; a thick callus on the parietal wall; columellar plait well marked. Ratios: shell width/shell length - 0.52-0.61 (mean 0.55); spire length/shell length = 0.27 - 0.33 (mean 0.31); aperture length/shell length = 0.67 - 0.73 (mean 0.69). Oral lappets laterally mucronate; foot spatulate with acuminate tail. Mantle relection with 6 - 8 short triangular dentations in the right lobe (columellar side) and 4 - 6 in the left lobe (near the pneumostome). Renal tube tightly folded into a zigzag course. Ovotestis, ovispermiduct, seminal vesicle, oviduct, nidamental gland, uterus and vagina as in Physa marmorata (see Paraense, 1986, Mem. Inst. Oswaldo Cruz, 81: 459-469). Spermathecal body egg-shaped or pear-shaped; spermathecal ducta uniformly narrow with expanded base, a little longer than the body. Spermiduct, prostate and vas deferens as in P. marmorata (Paraense, loc. cit.). Penis wide proximally, narrowing gradually apicad; penial canal with subterminal outlet. Penial sheath following the width of the penis and ending up by a bulbous expansion somewhat narrower than the proximal portion. Penaial sheath/prepuce ration = 1,25 - 1,83 (mean 1.49). Prepuce much wider than the bulb of the penial shealth, moderately shouldered owing to the intromission of the bulb, and with a large gland in one side of its proximal half occupating about a third of its length. Extrinsic muscles of the penial complex as in P. marmorata. Jaw a simple obtusely V-shaped plate. Radula to be described separetely.