78 resultados para visible image sensor
Resumo:
Objective: To learn about the experiences of adolescents diagnosed with idiopathic scoliosis. Method: Integrative review of the literature published within a specified time frame. Results: For both sexes, the predominant clinical symptom of this condition appears to be the negative effect that the deformity exerts on perceived self-image. Quantitative studies used numerical scores to assess perceptions of body image but did not analyse emotional aspects. Patients treated surgically were found to have a better self-image than patients treated with a brace. Quality of life was improved by a reduction in the magnitude of the curve. Conclusion: Spinal deformity exerts a psychological effect on adolescent girls.
The combined use of reflectance, emissivity and elevation Aster/Terra data for tropical soil studies
Resumo:
Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
Resumo:
Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.
Resumo:
Generally, in tropical and subtropical agroecosystems, the efficiency of nitrogen (N) fertilization is low, inducing a temporal variability of crop yield, economic losses, and environmental impacts. Variable-rate N fertilization (VRF), based on optical spectrometry crop sensors, could increase the N use efficiency (NUE). The objective of this study was to evaluate the corn grain yield and N fertilization efficiency under VRF determined by an optical sensor in comparison to the traditional single-application N fertilization (TSF). With this purpose, three experiments with no-tillage corn were carried out in the 2008/09 and 2010/11 growing seasons on a Hapludox in South Brazil, in a completely randomized design, at three different sites that were analyzed separately. The following crop properties were evaluated: aboveground dry matter production and quantity of N uptake at corn flowering, grain yield, and vegetation index determined by an N-Sensor® ALS optical sensor. Across the sites, the corn N fertilizer had a positive effect on corn N uptake, resulting in increased corn dry matter and grain yield. However, N fertilization induced lower increases of corn grain yield at site 2, where there was a severe drought during the growing period. The VRF defined by the optical crop sensor increased the apparent N recovery (NRE) and agronomic efficiency of N (NAE) compared to the traditional fertilizer strategy. In the average of sites 1 and 3, which were not affected by drought, VRF promoted an increase of 28.0 and 41.3 % in NAE and NRE, respectively. Despite these results, no increases in corn grain yield were observed by the use of VRF compared to TSF.
Resumo:
In the search for high efficiency in root studies, computational systems have been developed to analyze digital images. ImageJ and Safira are public-domain systems that may be used for image analysis of washed roots. However, differences in root properties measured using ImageJ and Safira are supposed. This study compared values of root length and surface area obtained with public-domain systems with values obtained by a reference method. Root samples were collected in a banana plantation in an area of a shallower Typic Carbonatic Haplic Cambisol (CXk), and an area of a deeper Typic Haplic Ta Eutrophic Cambisol (CXve), at six depths in five replications. Root images were digitized and the systems ImageJ and Safira used to determine root length and surface area. The line-intersect method modified by Tennant was used as reference; values of root length and surface area measured with the different systems were analyzed by Pearson's correlation coefficient and compared by the confidence interval and t-test. Both systems ImageJ and Safira had positive correlation coefficients with the reference method for root length and surface area data in CXk and CXve. The correlation coefficient ranged from 0.54 to 0.80, with lowest value observed for ImageJ in the measurement of surface area of roots sampled in CXve. The IC (95 %) revealed that root length measurements with Safira did not differ from that with the reference method in CXk (-77.3 to 244.0 mm). Regarding surface area measurements, Safira did not differ from the reference method for samples collected in CXk (-530.6 to 565.8 mm²) as well as in CXve (-4231 to 612.1 mm²). However, measurements with ImageJ were different from those obtained by the reference method, underestimating length and surface area in samples collected in CXk and CXve. Both ImageJ and Safira allow an identification of increases or decreases in root length and surface area. However, Safira results for root length and surface area are closer to the results obtained with the reference method.
Resumo:
Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
In evaluation of soil quality for agricultural use, soil structure is one of the most important properties, which is influenced not only by climate, biological activity, and management practices but also by mechanical and physico-chemical forces acting in the soil. The purpose of this study was to evaluate the influence of conventional agricultural management on the structure and microstructure of a Latossolo Vermelho distroférrico típico (Rhodic Hapludox) in an experimental area planted to maize. Soil morphology was described using the crop profile method by identifying the distinct structural volumes called Morphologically Homogeneous Units (MHUs). For comparison, we also described a profile in an adjacent area without agricultural use and under natural regrowth referred to as Memory. We took undisturbed samples from the main MHUs so as to form thin sections and blocks of soil for micromorphological and micromorphometrical analyses. Results from the application of the crop profile method showed the occurrence of the following structural types: loose (L), fragmented (F) and continuous (C) in both profiles analyzed. In the Memory soil profile, the fragmented structures were classified as Fptμ∆+tf and Fmt∆μ, whose micromorphology shows an enaulic-porphyric (porous) relative distribution with a great deal of biological activity as indicated by the presence of vughs and channels. Lower down, from 0.20 to 0.35 m, there was a continuous soil volume (sub-type C∆μ), with a subangular block microstructure and an enaulic-porphyric relative distribution, though in this case more compact and with aggregate coalescence and less biological activity. The micromorphometrical study of the soil of the Memory Plot showed the predominance of complex pores in NAM (15.03 %), Fmt∆μ (11.72 %), and Fptμ∆+tf (7.73 %), and rounded pores in C∆μ (8.21 %). In the soil under conventional agricultural management, we observed fragmented structures similar to the Memory Plot from 0.02 to 0.20 m, followed by a volume with a compact continuous structure (C∆μ), without visible porosity and with few roots. In the MHUs under conventional management, reduction in the packing pores (40 %) was observed, mainly in the continuous units (C). The microstructure had well-defined blocks, with the occurrence of planar pores and less evidence of biological activity. In conclusion, the morphological and micromorphological analyses of the soil profiles studied offered complementary information regarding soil structural quality, especially concerning the changes in pore types as result of mechanical stress undergone by the soil.
Resumo:
Um estudo foi realizado sob condições de laboratório e de campo objetivando avaliar um sensor de solo utilizado para determinação da temperatura e da tensão da água no solo. Devido à solubilidade do gesso, material poroso utilizado na fabricação dos sensores, houve redução em área da seção transversal e volume, e aumento da porosidade efetiva desses sensores, em relação aos valores observados antes do início dos testes. Os valores médios da temperatura observados com os sensores foram praticamente iguais aos observados com um termômetro de referência com precisão de 0,1°C. Quando sensores saturados foram instalados a 5 cm de profundidade em um solo franco-argilo-siltoso secado ao ar, em relação a valores de Delta T, o tempo de resposta do sensor à secagem foi um pouco superior a 24 horas. Valores de Delta T observados, tanto no laboratório quanto no campo, apresentaram maior variabilidade na faixa representativa de solo seco, em comparação com o solo úmido. Sob condições de campo, não houve diferença estatística (teste F; 5%) entre as médias de Delta T obtidas com os sensores de dissipação de calor instalados a 10 cm de profundidade e as médias de tensão obtidas com tensiômetros e transformadas para Delta T.
Resumo:
Dados hiperespectrais coletados no Brasil pelo sensor AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) foram utilizados para a caracterização espectral de uma típica cena agropastoril e para testar o uso da técnica Spectral Feature Fitting (SFF) na identificação de minerais argilosos na imagem. Utilizou-se um modelo linear de mistura espectral, usando como membros de referência a vegetação verde e seca, a água, e os solos Nitossolo Vermelho, Latossolo Vermelho e Neossolo Quartzarênico órtico. Na identificação dos minerais, foram selecionados espectros de referência da biblioteca espectral do JPL/NASA. Os espectros dos pixels e das referências foram normalizados pelo método do contínuo espectral, entre 2.100 e 2.330 nm, e depois comparados quanto à similaridade com o uso da técnica SFF. A caulinita predomina na cena, cuja identificação remota é dependente do tipo de solo e das proporções dos componentes da cena no interior do pixels. Os melhores resultados foram obtidos em solos de reflectância intermediária a alta e em pixels com valor de abundância da fração solo superior a 70%. Isto ocorreu devido, respectivamente, à menor quantidade de substâncias opacas nestes solos e à redução nos pixels dos efeitos espectrais da lignina-celulose. Estes fatores tendem a mascarar as bandas de absorção das argilas.
Resumo:
Evaluation of root traits may be facilitated if they are assessed on samples of the root system. The objective of this work was to determine the sample size of the root system in order to estimate root traits of common bean (Phaseolus vulgaris L.) cultivars by digital image analysis. One plant was grown per pot and harvested at pod setting, with 64 and 16 pots corresponding to two and four cultivars in the first and second experiments, respectively. Root samples were scanned up to the completeness of the root system and the root area and length were estimated. Scanning a root sample demanded 21 minutes, and scanning the entire root system demanded 4 hours and 53 minutes. In the first experiment, root area and length estimated with two samples showed, respectively, a correlation of 0.977 and 0.860, with these traits measured in the entire root. In the second experiment, the correlation was 0.889 and 0.915. The increase in the correlation with more than two samples was negligible. The two samples corresponded to 13.4% and 16.9% of total root mass (excluding taproot and nodules) in the first and second experiments. Taproot stands for a high proportion of root mass and must be deducted on root trait estimations. Samples with nearly 15% of total root mass produce reliable root trait estimates.
Resumo:
O objetivo deste trabalho foi estimar a produtividade de soja no Rio Grande do Sul, nas safras de 2000/2001 a 2002/2003, por meio de um modelo agronômico implementado em um Sistema de Informação Geográfica (SIG). Duas abordagens foram utilizadas: o modelo agronômico (AGRO), com valores de índice de área foliar (IAF) obtidos da literatura; e o modelo agronômico-espectral (AGROESPEC), com valores de IAF estimados a partir das imagens MODIS (moderate resolution imaging spectroradiometer). As estimativas de produtividade obtidas pelo modelo foram comparadas àquelas fornecidas pelo Instituto Brasileiro de Geografia e Estatística (IBGE), com o uso do teste t para pares de observação. Nas safras 2000/2001 e 2001/2002, não foram observadas diferenças significativas. Para 2002/2003, o modelo subestimou o valor de produtividade em 7,87 e 7,04%, nas abordagens AGRO e AGROESPEC, respectivamente, em comparação à produtividade fornecida pelo IBGE. Ambas as abordagens do modelo permitiram avaliação objetiva e quantitativa do efeito das condições meteorológicas sobre a produtividade de soja. Entretanto, o AGROESPEC forneceu estimativas mais detalhadas, no que se refere à variação espacial da produtividade, em razão do emprego dos valores de IAF estimados a partir das imagens MODIS.
Resumo:
O objetivo deste trabalho foi avaliar a adequação do uso do sensor AVHRR/NOAA (Advanced Very High Resolution Radiometer/National Oceanic and Atmospheric Administration) para mapeamento da temperatura da superfície terrestre (TST) no Estado do Rio Grande do Sul, por meio da comparação entre três algoritmos clássicos. Foram comparados os métodos de Becker & Li, Sobrino et al. e Kerr et al. para estimativa das TST mínimas, utilizando imagens noturnas e logo após o amanhecer. Os dados de emissividade e TST foram obtidos por meio de combinações matemáticas da radiação detectada nas faixas do visível, infravermelho próximo e termal do sensor AVHRR/NOAA. O sensor AVHRR é adequado para o mapeamento de TST para as condições do tipo de cobertura do solo que predominam no Rio Grande do Sul, visto que a TST estimada pelos três métodos testados foi próxima à temperatura do ar medida nos locais selecionados. O método de Sobrino et al. foi o mais adequado.
Resumo:
O objetivo deste trabalho foi avaliar, com um sensor ótico ativo, o comportamento do índice de vegetação por diferença normalizada (NDVI - "normalized difference vegetation index"), nas culturas de trigo, triticale, cevada e milho. Cinco experimentos foram conduzidos no Paraná e São Paulo, com variação de classes de solo, doses e fontes de N, e variedades de trigo. As seguintes variáveis foram avaliadas: NDVI, teor de N foliar, matéria seca e produtividade das culturas. Análises de regressões foram realizadas entre as doses de N aplicadas e NDVI, teor de N foliar, matéria seca e produtividade. Análises de correlação entre as variáveis foram realizadas. O trigo, triticale e cevada apresentaram resposta às aplicações de doses crescentes de N, pelo aumento nas leituras do NDVI, no teor de N foliar e na produtividade. Medido pelo sensor ótico ativo utilizado, o NDVI apresenta alto potencial para manejo do N nas culturas do trigo, triticale e cevada, e baixo potencial para a cultura do milho. Há interferência das variedades de trigo nas leituras do sensor ótico ativo.