117 resultados para trypomastigotes
Resumo:
Trypomastigote forms of Trypanosoma cruzi were metabolically labeled with [14C]-ethanolamine and [3H]-palmitic acid. Lipids shed to the culture medium were analyzed and compared with the parasite components. Phosphatidylcholine and lysophosphatidylcholine accounted for 53% of the total incorporated precursor. Interestingly, phosphatidylethanolamine and its lyso derivative lysophosphatidylethanolamine, although present in significant amounts in the parasites, could not be detected in the shed material. Shed lipids were highly enriched in the desaturated fatty acids C16:1 and C18:1 when compared to the total fatty acid pool isolated from the parasites.
Resumo:
Attempts to recreate all the developmental stages of Trypanosoma cruzi in vitro have thus far been met with partial success. It is possible, for instance, to produce trypomastigotes in tissue culture and to obtain metacyclic trypomastigotes in axenic conditions. Even though T. cruzi amastigotes are known to differentiate from trypomastigotes and metacyclic trypomastigotes, it has only been possible to generate amastigotes in vitro from the tissue-culture-derived trypomastigotes. The factors and culture conditions required to trigger the transformation of metacyclic trypomastigotes into amastigotes are as yet undetermined. We show here that pre-incubation of metacyclic trypomastigotes in culture (MEMTAU) medium at 37°C for 48 h is sufficient to commit the parasites to the transformation process. After 72 h of incubation in fresh MEMTAU medium, 90% of the metacyclic parasites differentiate into forms that are morphologically indistinguishable from normal amastigotes. SDS-PAGE, Western blot and PAABS analyses indicate that the transformation of axenic metacyclic trypomastigotes to amastigotes is associated with protein, glycoprotein and antigenic modifications. These data suggest that (a) T. cruzi amastigotes can be obtained axenically in large amounts from metacyclic trypomastigotes, and (b) the amastigotes thus obtained are morphological, biological and antigenically similar to intracellular amastigotes. Consequently, this experimental system may facilitate a direct, in vitro assessment of the mechanisms that enable T. cruzi metacyclic trypomastigotes to transform into amastigotes in the cells of mammalian hosts.
Resumo:
Amastigogenesis occurs first when metacyclic trypomastigotes from triatomine urine differentiate into amastigotes inside mammalian host cells and a secondary process when tissue-derived trypomastigotes invade new cells and differentiate newly to amastigotes. Using scanning electron microscopy, we compared the morphological patterns manifested by trypomastigotes and metacyclic forms of Trypanosoma cruzi during their axenic-transformation to amastigotes in acidic medium at 37°C. We show here that in culture MEMTAU medium, secondary and primary axenic amastigogenesis display different morphologies. As already described, we also observed a high differentiation rate of trypomastigotes into amastigotes. Conversely, the transformation rate of in vitro-induced-metacyclic trypomastigotes to amastigotes was significantly slower and displayed distinct patterns of transformation that seem environment-dependent. Morphological comparisons of extracelullar and intracellular amastigotes showed marked similarities, albeit some differences were also detected. SDS-PAGE analyses of protein and glycoprotein from primary and axenic extracelullar amastigotes showed similarities in glycopeptide profiles, but variations between their proteins demonstrated differences in their respective macromolecular constitutions. The data indicate that primary and axenic secondary amastigogenesis of T. cruzi may be the result of different developmental processes and suggest that the respective intracellular mechanisms driving amastigogenesis may not be the same.
Resumo:
Trypanosoma cruzi, the protozoan responsible for Chagas disease, employs distinct strategies to invade mammalian host cells. In the present work we investigated the participation of calcium ions on the invasion process using primary cultures of embryonic mice cardiomyocytes which exhibit spontaneous contraction in vitro. Using Fura 2-AM we found that T. cruzi was able to induce a sustained increase in basal intracellular Ca2+ level in heart muscle cells (HMC), the response being associated or not with Ca2+ transient peaks. Assays performed with both Y and CL strains indicated that the changes in intracellular Ca2+ started after parasites contacted with the cardiomyocytes and the evoked response was higher than the Ca2+ signal associated to the spontaneous contractions. The possible role of the extracellular and intracellular Ca2+ levels on T. cruzi invasion process was evaluated using the extracellular Ca2+ chelator EGTA alone or in association with the calcium ionophore A23187. Significant dose dependent inhibition of the invasion levels were found when intracellular calcium release was prevented by the association of EGTA +A23187 in calcium free medium. Dose response experiments indicated that EGTA 2.5 mM to 5 mM decreased the invasion level by 15.2 to 35.1% while A23187 (0.5 µM) alone did not induce significant effects (17%); treatment of the cultures with the protease inhibitor leupeptin did not affect the endocytic index, thus arguing against the involvement of leupeptin sensitive proteases in the invasion of HMC.
Resumo:
It has been recently shown that Trypanosoma cruzi trypomastigotes subvert a constitutive membrane repair mechanism to invade HeLa cells. Using a membrane extraction protocol and high-resolution microscopy, the HeLa cytoskeleton and T. cruzi parasites were imaged during the invasion process after 15 min and 45 min. Parasites were initially found under cells and were later observed in the cytoplasm. At later stages, parasite-driven protrusions with parallel filaments were observed, with trypomastigotes at their tips. We conclude that T. cruzi trypomastigotes induce deformations of the cortical actin cytoskeleton shortly after invasion, leading to the formation of pseudopod-like structures.
Resumo:
Trypanosoma cruzi infects humans when infected triatomine vector excreta contaminate breaks in skin or mucosal surfaces. T. cruzi insect-derived metacyclic trypomastigotes (IMT) invade through gastric mucosa after oral challenges without any visible inflammatory changes, while cutaneous and conjunctival infections result in obvious local physical signs. In this study we compared the infectivity of T. cruzi IMT in mice after cutaneous and oral contaminative challenges simulating natural infections. The 50% infective dose (ID50) for oral challenge was 100 fold lower than the ID50for cutaneous challenge, indicating that oral mucosal transmission is more efficient than cutaneous transmission.
Resumo:
Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal) drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol), has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target.
Resumo:
Penetration of Trypanosoma cruzi into mammalian cells depends on the activation of the parasite's protein tyrosine kinase and on the increase in cytosolic Ca2+ concentration. We used metacyclic trypomastigotes, the T. cruzi developmental forms that initiate infection in mammalian hosts, to investigate the association of these two events and to identify the various components of the parasite signal transduction pathway involved in host cell invasion. We have found that i) both the protein tyrosine kinase activation, as measured by phosphorylation of a 175-kDa protein (p175), and Ca2+ mobilization were induced in the metacyclic forms by the HeLa cell extract but not by the extract of T. cruzi-resistant K562 cells; ii) treatment of parasites with the tyrosine kinase inhibitor genistein blocked both p175 phosphorylation and the increase in cytosolic Ca2+ concentration; iii) the recombinant protein J18, which contains the full-length sequence of gp82, a metacyclic stage surface glycoprotein involved in target cell invasion, interfered with tyrosine kinase and Ca2+ responses, whereas the monoclonal antibody 3F6 directed at gp82 induced parasite p175 phosphorylation and Ca2+ mobilization; iv) treatment of metacyclic forms with phospholipase C inhibitor U73122 blocked Ca2+ signaling and impaired the ability of the parasites to enter HeLa cells, and v) drugs such as heparin, a competitive IP3-receptor blocker, caffeine, which affects Ca2+ release from IP3-sensitive stores, in addition to thapsigargin, which depletes intracellular Ca2+ compartments and lithium ion, reduced the parasite infectivity. Taken together, these data suggest that protein tyrosine kinase, phospholipase C and IP3 are involved in the signaling cascade that is initiated on the parasite cell surface by gp82 and leads to Ca2+ mobilization required for target cell invasion.
Resumo:
C3H/He and C57B1/6 mice were inoculated with 500 Trypanosoma cruzi trypomastigotes (Strain Y). During the acute phase infected mice presented parasitemia and enlargement of lymph nodes and spleens and intracellular parasites were observed in the heart. Examinations of cells derived from spleen and lymph nodes showed increased numbers of IgM and IgG-bearing cells. During the peak of splenomegaly, about day 17 post-infections, splenic lymphocytes showed a marked decrease in responsiveness to T and B-cell mitogens, parasite antigens and plaque forming cells (PFC) to sheep red blood cells (SRBC). Unfractionated or plastic adherent splenic cells from mice, obtained during the acute phase were able to suppress the response to mitogens by lymphocytes from uninfected mice. During the chronic phase. Disappearance of parasitemia and intracellular parasites in the hearts as well as a decrease in spleen size, was observed. These changes preceded the complete recovery of responsiveness to mitogens and T. cruzi antigens by C57B1/6 splenic lymphocytes. However, this recovery was only partial in the C3H/He mice, known to be more sensitive to T. cruzi infection. Partial recovery of humoral immune response also occurred in both strains of mice during the chronic phase.
Resumo:
The method, site, and stage of multiplication of Trypanosoma (Herpetosoma) rangeli Tejera, 1920 has not hitherto been known. "We have now observed many intracellular nests or pseudocysts, containing amastigotes and trypomastigotes of this parasite in the heart, liver, and spleen of suckling (5.0 g) male white mice (NMRI strain) inoculated i.p. with 9 x 10(4) metatrypomastigotes/g body weight from a 12-day-old culture of the "Dog-82" strain of T. rangeli. At the peak of parasitemia (1.9 x 10(6) trypomastigotes/ml blood, 3 days post-inoculation) various tissues were taken for sectioning and staining. The heart was most intensely parasitized. The amastigotes were rounded or ellipsoidal, with a rounded nucleus and the kinetoplast in the form of a straight or curved bar; the average maximum diameter of 50 measured amastigotes was 4.2 p. Binary fission was seen in the nucleus and kinetoplast of some amastigotes; no blood trypomastigotes were seen in division. The above characteristics, as well as the location of the pseudocysts in the tissues, are similar to T. cruzi. Comparison of these results with those reported for other Herpetosoma suggest study of the taxonomic position of T. rangeli.
Resumo:
The infectivity amastigotes of Trypanosoma cruzi, isolated from the supernatant of the J774G8 macrophage-like cell line infected with trypomastigotes to normal macrophages in vitro was tested. After a period of 1 h of T. cruzi-macrophage interaction about 2% of the mouse peritoneal macrophages had ingested amastigotes. In contrast 12% of the macrophages had ingested epimastigotes. Treatment of the amastigotes with trypsin did not interfere with their ingestion by macrophages. Once inside the macrophages the amastigotes divided and after some days transformed into trypomastigotes. When i.p. inoculated into mice the amastigotes were highly infective, inducing high levels of parasitaemia and tissue parasitism. As previously described for trypomastigotes, amastigotes were not lysed when incubated in the presence of fresh guinea-pig serum. Contrasting with what has been described for trypomastigotes, the resistance of amastigotes to complement-mediated lysis persisted after treatment with trypsin.
Resumo:
Male mice (NMRI strain) of 3 and 5 g were inoculated i. p. with 8 x 10(6) and 9 x 10(4) metatrypomastigotes/g harvested from a 12-day-old LIT culture of Trypanosoma rangeli of the "Dog-82" strain. At regular intervals after inoculation, the animals were sacrificed and portions of heart, liver, spleen, lung, thigh, kidney, stomach, intestine, brain, sternum, and vertebral column were embedded in paraffin, sectioned, and stained with haematoxylin-eosin and Giemsa colophonium. Pathology was encountered in the first five tissues cited above. The subcutaneous, periosteal, interstitial, and peribronchial connective tissues, and later the muscle cells of the heart, were heavily parasitized by amastigotes and trypomastigotes. The possible reasons for the decrease in tissue parasitosis at the same time that the parasitemia is reaching its peak, and for the low level of inflammation in the parasitized tissues, are discussed. The observations of other workers, as well as the results described here, indicate that certain strains of T. rangeli under certain conditions may well cause pathological alterations in mammals.
Resumo:
Chagas'disease has been described as the commonest form of chronic myocarditis. An immunologic pathogenesis has been discribed for this form of the disease. So far, no immunoperoxidase technique has been used for the detection of immunological deposits in chronic experimental Chagas'myocardiopathy. Forty-one Swiss mice, three months old were inoculated intraperitoneally with doses between 10 and 10(5) Tulahuen trypomastigotes. Mice were reinoculated one month after with doses between 10² and 10(5) and sacrificed at 6 (n=21) and 9 months (n=9) after the first inoculation. ECGs were recorded before sacrifice. Immunoperoxidase technique (peroxidase-antiperoxidase method), immunofluorescence (direct and indirect) as well as histological studies were performed in myocardiums and skeletal muscles of the surviving animals. The most sensitive methods for detecting chronic chagasic infection were the routine histologic studies (73%) and the ECGs 83% and 89% on 6 and 9 mo. post-infected mice, respectively. Myocardial involvement varied from interstitial mild focal lymphocyte infiltrates up to replacement of myocytes by loose connective tissue. Atrial myocardiums (21/23, 91%) were more affected than ventricles (9/23, 39%). Typical chagasic nests were rarely found. Skeletal muscle involvement (11/18 and 7/9) varied from mild to extensive lymphocyte and plasmacell infiltrates, and necrotic fibers. The involved antigen were shown in skeletal muscles by the immunoperoxidase technique as diffusely arranged granular intracytoplasmatic deposit for both IgC and total immunoglobulins. The coincidence between this technique and histologic muscle lesions was 11/18 (61(%) in 6 mo. and 6/8 (75%) at 9 mo. post-infection. In heart, delicate granular deposits of total immunoglobulins were seen diffusely arranged within the ventricular myocytes; coincidence between immunoperoxidase technique anl histologic involvement increased from 36 to 66% in animals sacrifeced 6 and 9 mo. post-infection. This strongly stressed the increase of immunologic phenomena with the chronification of infection. Concerning sensitivity, immunoperoxidase and direct immunofluorescence were highly sensitive in skeletal muscle (100%, p < 0.01). Conversely, direct immunofluorescence technique showed poor results in heart while immunoperoxidase increased its sensitivity from 21.4% (at 6 mo.) to 66.6% (at 9 mo.) post-infection (p < 0.001). Considering the necessity of obtaining an adequate vaccine in order to prevent this disease an experimental model like this, rendering immunological reactions as revealed by the immunoperoxidase technique, would be useful.
Resumo:
Sera of Chaga's disease patients containing anti-T. cruzi lytic antibodies were submitted to affinity chromatography using Sepharose 4B conjugated with antigen extracted from epimasiigote or trypomasiigote forms of the parasite. Epimastigotes were obtained from culture at the exponential growth phase and the trypomastigotes from blood of infected and immunosuppressed mice. Antigen of both parasite forms was obtained by sonication of the parasites followed by centrifugation. Both antigens were then conjugated to activated Sepharose 4B. Affinity chromatography was performed by passing sera from chagasic patients through an immunoadsorbent column containing either epimasiigote or trypomasiigote antigens. Antibodies bound to the column were eluted with cold 0,2 M glycine buffer pH 2,8. The eluted antibodies were analysed regarding their isotype and lytic activity. The results showed that anti-T. cruzi lytic antibodies present in sera from chagasic patients are mainly located in the IgG isotype and recognize epitopes present in both trypomasiigote and epimastigote forms. A brief report of this work has already been published12.
Resumo:
Calomys callosus a wild rodent, previously described as harboring Trypanosoma cruzi, has a low susceptibility to infection by this protozoan. Experiments were designed to evaluate the contribution of the immune response to the resistance to T. cruzi infection exhibited by C. calossus. Animals were submitted to injections of high (200 mg/kg body weight) and low (20 mg/kg body weight) doses of cyclophosphamide on days -1 or -1 and +5, and inoculated with 4 x 10³ T. cruzi on day O. Parasitemia, mortality and antibody response as measured by direct agglutination of trypomastigotes were observed. Two hundred mg doses of cyclophosphamide resulted in higher parasitemia and mortality as well as in suppression of the antibody response. A single dose of 20 mg enhanced antibody levels on the 20th day after infection, while an additional dose did not further increase antibody production. Parasitemia levels were not depressed, but rather increased in both these groups as compared to untreated controls. Passive transfer of hyperimmune C. callosus anti-T. cruzi serum to cyclophosphamide immunosuppressed animals resulted in lower parasitemia and mortality rates. These results indicate that the immune response plays an important role in the resistance of C. callossus to T. cruzi.