50 resultados para transcutaneous electrical nerve stimulation
Acute and chronic electrical activation of baroreceptor afferents in awake and anesthetized subjects
Resumo:
Electrical stimulation of baroreceptor afferents was used in the 1960's in several species, including human beings, for the treatment of refractory hypertension. This approach bypasses the site of baroreceptor mechanosensory transduction. Chronic electrical stimulation of arterial baroreceptors, particularly of the carotid sinus nerve (Hering's nerve), was proposed as an ultimate effort to treat refractory hypertension and angina pectoris due to the limited nature of pharmacological therapy available at that time. Nevertheless, this approach was abandoned in the early 1970's due to technical limitations of implantable devices and to the development of better-tolerated antihypertensive medications. More recently, our laboratory developed the technique of electrical stimulation of the aortic depressor nerve in conscious rats, enabling access to hemodynamic responses without the undesirable effect of anesthesia. In addition, electrical stimulation of the aortic depressor nerve allows assessment of the hemodynamic responses and the sympathovagal balance of the heart in hypertensive rats, which exhibit a well-known decrease in baroreflex sensitivity, usually attributed to baroreceptor ending dysfunction. Recently, there has been renewed interest in using electrical stimulation of the carotid sinus, but not the carotid sinus nerve, to lower blood pressure in conscious hypertensive dogs as well as in hypertensive patients. Notably, previous undesirable technical outcomes associated with electrical stimulation of the carotid sinus nerve observed in the 1960's and 1970's have been overcome. Furthermore, promising data have been recently reported from clinical trials that evaluated the efficacy of carotid sinus stimulation in hypertensive patients with drug resistant hypertension.
Resumo:
The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP) on nerve regeneration. Male Wistar rats (300 g; n=36) underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001), compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05). Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001), in the density of myelinated fibers/mm2 (P<0.05) and in the degeneration fragments (P<0.01). Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.
Resumo:
In modern society, thiamine deficiency (TD) remains an important medical condition linked to altered cardiac function. There have been contradictory reports about the impact of TD on heart physiology, especially in the context of cardiac excitability. In order to address this particular question, we used a TD rat model and patch-clamp technique to investigate the electrical properties of isolated cardiomyocytes from epicardium and endocardium. Neither cell type showed substantial differences on the action potential waveform and transient outward potassium current. Based on our results we can conclude that TD does not induce major electrical remodeling in isolated cardiac myocytes in either endocardium or epicardium cells.
Resumo:
Responses evoked in the earthworm, Amynthas hawayanus, main muscle contraction generator M-2 (postsynaptic mechanical-stimulus-sensitive) neuron by threshold mechanical stimuli in 2-s intertrial intervals (ITI) were used as the control or unconditioned responses (UR). Their attenuation induced by decreasing these intervals in non-associative conditioning and their enhancement induced by associating the unconditioned stimuli (US) to a train of short (0.1 s) hyperpolarizing electrical substitutive conditioning stimuli (SCS) in the Peri-Kästchen (PK) neuron were measured in four parameters, i.e., peak numbers (N) and amplitude ()averaged from 120 responses, sum of these amplitudes (SAMP) and the highest peak amplitude (V) over a period of 4 min. Persistent attenuation similar to habituation was induced by decreasing the control ITI to 0.5 s and 2.0 s in non-associative conditioning within less than 4 min. Dishabituation was induced by randomly pairing one of these habituated US to an electrical stimulus in the PK neuron. All four parameters of the UR were enhanced by forward (SCS-US), but not backward (US-SCS), association of the US with 25, 100 and 250-Hz trains of SCS with 40-ms interstimulus intervals (ISI) for 4 min and persisted for another 4 min after turning off the SCS. The enhancement of these parameters was proportional to the SCS frequencies in the train. No UR was evoked by the SCS when the US was turned off after 4 min of classical conditioning.
Resumo:
Optical tracers in conjunction with fluorescence microscopy have become widely used to follow the movement of synaptic vesicles in nerve terminals. The present review discusses the use of these optical methods to understand the regulation of exocytosis and endocytosis of synaptic vesicles. The maintenance of neurotransmission depends on the constant recycling of synaptic vesicles and important insights have been gained by visualization of vesicles with the vital dye FM1-43. A number of questions related to the control of recycling of synaptic vesicles by prolonged stimulation and the role of calcium to control membrane internalization are now being addressed. It is expected that optical monitoring of presynaptic activity coupled to appropriate genetic models will contribute to the understanding of membrane traffic in synaptic terminals.
Resumo:
Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO) depend on the integrity of the rostral ventrolateral medulla (RVLM). Therefore, to test the participation of excitatory amino acid (EAA) receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s), the EAA antagonist kynurenic acid (Kyn) was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl) of male Wistar rats (270-320 g, N = 39) and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01), bradycardia (deltaHR = -30 ± 7 bpm, P<0.01) and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7). Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6). Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7). These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.
Resumo:
The dorsal (DRN) and median (MRN) raphe nuclei are important sources of serotonergic innervation to the forebrain, projecting to sites involved in cardiovascular regulation. These nuclei have been mapped using electrical stimulation, which has the limitation of stimulating fibers of passage. The present study maps these areas with chemical stimulation, investigating their influence on cardiorespiratory parameters. Urethane-anesthetized (1.2 g/kg, iv) male Wistar rats (280-300 g) were instrumented for pulsatile and mean blood pressure (MBP), heart rate, renal nerve activity, and respiratory frequency recordings. Microinjections of L-glutamate (0.18 M, 50-100 nl with 1% Pontamine Sky Blue) were performed within the DRN or the MRN with glass micropipettes. At the end of the experiments the sites of microinjection were identified. The majority of sites within the MRN (86.1%) and DRN (85.4%) evoked pressor responses when stimulated (DRN: deltaMBP = +14.7 ± 1.2; MRN: deltaMBP = +13.6 ± 1.3 mmHg). The changes in renal nerve activity and respiratory rate caused by L-glutamate were +45 ± 11 and +42 ± 9% (DRN; P < 0.05%), +40 ± 10 and +29 ± 7% (MRN, P < 0.05), respectively. No significant changes were observed in saline-microinjected animals. This study shows that: a) the blood pressure increases previously observed by electrical stimulation within the raphe are due to activation of local neurons, b) this pressor effect is due to sympathoexcitation because the stimulation increased renal sympathetic activity but did not produce tachycardia, and c) the stimulation of cell bodies in these nuclei also increases the respiratory rate.
Resumo:
The effects of a brief jet of water delivered to the anterior portion of body-head on the heart rate of Megalobulimus mogianensis were determined in a group of intact snails (N = 8), previously prepared for electrocardiogram recording. The heart rate was significantly increased following stimulation. Nevertheless, with repetition of the stimulus there was a significant decrease in the magnitude of the heart rate variation and in the time for the basal heart rate to recover (first stimulus, 7.4 ± 1.2 bpm and 15.5 ± 1.8 min; second stimulus, 4.8 ± 1.0 bpm and 10.6 ± 1.5 min; third stimulus, 5.0 ± 0.3 bpm and 11.1 ± 1.8 min), indicating that this behavioral response undergoes early habituation. To determine the role of the cardiac nerve in mediating the heart rate alterations induced by the jet of water two other groups were tested: denervated animals (N = 8) and sham-operated control animals (N = 8). Although the innocuous stimulus caused the heart rate to increase significantly in both experimental groups, the mean increase in heart rate in denervated animals (3.2 ± 0.4 bpm) was 41% of the value obtained in sham-operated animals (7.8 ± 1.5 bpm), indicating that the cardiac nerve is responsible for 59% of the cardioacceleration induced by the innocuous stimulus. The increase in heart rate observed in denervated animals may be due to an increase in venous return promoted by the intense muscular activity associated with the retraction-protraction of the anterior part of the body induced by the jet of water.
Resumo:
The effect of an aversive stimulus represented by contact with a hot plate on the heart rate of Megalobulimus mogianensis was evaluated with electrocardiogram recording in intact snails (N = 8). All stimulated animals showed an increase in heart rate, with mean values ranging from 35.6 ± 1.2 (basal heart rate) to 43.8 ± 0.9 bpm (post-stimulation heart rate). The cardioacceleration was followed by gradual recovery of the basal heart rate, with mean recovery times varying from 4.3 ± 0.3 to 5.8 ± 0.6 min. Repetition of the stimulus did not affect the magnitude of variation nor did it influence the basal heart rate recovery time. To investigate the role of the cardiac nerve in mediating the heart rate alterations induced by the aversive stimulus, denervated (N = 8) and sham-operated (N = 8) animals were also tested. Although the aversive stimulus caused the heart rate to increase significantly in both experimental groups, the mean increase in heart rate in denervated animals (4.4 ± 0.4 bpm) was 57% of the value obtained in sham-operated animals (7.7 ± 1.3 bpm), indicating that the cardiac nerve is responsible for 43% of the cardioacceleration induced by the aversive stimulus. The cardioacceleration observed in denervated snails may be due to an increase in venous return promoted by the intense muscular activity associated with the withdrawal response. Humoral factors may also be involved. A probable delaying inhibitory effect of the cardiac nerve on the recuperation of the basal heart rate is suggested.
Resumo:
The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.
Resumo:
Sixteen S. mansoni infected and untreated patients (5 with recent infection and 11 with chronic disease) were evaluated for their in vitro natural killer (NK) activity against the NK sensitive target K562 cell line. NK levels in 9 out of 11 patients (82%) with chronic disease were significantly lower (mean = 15 ± 6%),compared with patients recently infected (mean = 41 ± 9% p < 0.001) and with the control group (mean = 38 ± 13% p < 0.001). However, both patients and controls NK activity was stimulated by soluble adult worm antigens (SAWA), indicating that NK function even in the chronic stage of the infection is able to respond to the parasite antigens. These results suggest the possibility of NK cell participation as effector mechanism against S. mansoni.
Resumo:
This case report describes the findings of a 27-year-old black male from Bahia, Brazil, who developed facial palsy during the convalescence phase of leptospirosis. The patient recovered without neurological sequel. This work calls attention to a possible association between leptospirosis and facial palsy.
Resumo:
INTRODUCTION: This study evaluated the degree of disability, pain levels, muscle strength, and electromyographic function (RMS) in individuals with leprosy. METHODS: We assessed 29 individuals with leprosy showing common peroneal nerve damage and grade 1 or 2 disability who were referred for physiotherapeutic treatment, as well as a control group of 19 healthy participants without leprosy. All subjects underwent analyses of degree of disability, electromyographic tests, voluntary muscle force, and the Visual Analog Pain Scale. RESULTS: McNemar's test found higher levels of grade 2 of disability (Δ = 75.9%; p = 0.0001) among individuals with leprosy. The Mann-Whitney test showed greater pain levels (Δ = 5.0; p = 0.0001) in patients with leprosy who had less extension strength in the right and left extensor hallucis longus muscles (Δ = 1.28, p = 0.0001; Δ = 1.55, p = 0.0001, respectively) and dorsiflexion of the right and left feet (Δ = 1.24, p = 0.0001; Δ = 1.45, p = 0.0001, respectively) than control subjects. The Kruskal-Wallis test showed that the RMS score for dorsiflexion of the right (Δ = 181.66 m·s-2, p = 0.001) and left (Δ = 102.57m·s-2, p = 0.002) feet was lower in patients with leprosy than in control subjects, but intragroup comparisons showed no difference. CONCLUSIONS: Leprosy had a negative influence on all of the study variables, indicating the need for immediate physiotherapeutic intervention in individuals with leprosy. This investigation opens perspectives for future studies that analyze leprosy treatment with physical therapeutic intervention.
Resumo:
Introduction CD4+CD25+ T lymphocytes have been implicated in the regulation of host inflammatory response against Trypanosoma cruzi, and may be involved in the clinical course of the disease. Methods Peripheral blood mononuclear cells from patients with chronic Chagas disease were cultured in the presence of T. cruzi recombinant antigens and assayed for lymphocytes at distinct time points. Results It was possible to differentiate clinical forms of chronic Chagas disease at days 3 and 5 according to presence of CD4+CD25+ T cells in cell cultures. Conclusions Longer periods of cell culture proved to be potentially valuable for prospective evaluations of CD4+CD25+ T lymphocytes in patients with chronic Chagas disease.
Resumo:
The anatomical relationship between the recurrent laryngeal nerve (RLN) and the inferior thyroid artery (ITA) was studied in 76 embalmed corpses, 8 females and 68 males. In both sexes, the RLN lay more frequently between branches of the ITA.; it was found in this position in 47.3% of male corpses and 42.8% of female ones. On the right, RLN was found between branches of the ITA in 49.3% of the cases, anterior to it in 38.04%, and posterior in 11.26%. On the left, the RLN lay between branches of the ITA in 44.45%, posterior to the ITA in 37.05%, and anterior to it in 18.05% of the cases. In 62.68% of the cases, the relationship found on one side did not occur again on the opposite side. There was a significant difference (p<0.05) in the distribution of the 3 types of relationships between the RLN and the ITA, on the right and on the left. Racial variations could contribute to an explanation of the differences observed by authors of different countries in the relationship between the RLN and the ITA.