18 resultados para transcription factor binding sites
Resumo:
The carbohydrate-binding specificity of lectins from the seeds of Canavalia maritima and Dioclea grandiflora was studied by hapten-inhibition of haemagglutination using various sugars and sugar derivatives as inhibitors, including N-acetylneuraminic acid and N-acetylmuramic acid. Despite some discrepancies, both lectins exhibited a very similar carbohydrate-binding specificity as previously reported for other lectins from Diocleinae (tribe Phaseoleae, sub-tribe Diocleinae). Accordingly, both lectins exhibited almost identical hydropathic profiles and their three-dimensional models built up from the atomic coordinates of ConA looked very similar. However, docking experiments of glucose and mannose in their monosaccharide-binding sites, by comparison with the ConA-mannose complex used as a model, revealed conformational changes in side chains of the amino acid residues involved in the binding of monosaccharides. These results fully agree with crystallographic data showing that binding of specific ligands to ConA requires conformational chances of its monosaccharide-binding site.
Resumo:
Leishmania parasites expose phosphatidylserine (PS) on their surface, a process that has been associated with regulation of host's immune responses. In this study we demonstrate that PS exposure by metacyclic promastigotes of Leishmania amazonensis favours blood coagulation. L. amazonensis accelerates in vitro coagulation of human plasma. In addition, L. amazonensis supports the assembly of the prothrombinase complex, thus promoting thrombin formation. This process was reversed by annexin V which blocks PS binding sites. During blood meal, Lutzomyia longipalpis sandfly inject saliva in the bite site, which has a series of pharmacologically active compounds that inhibit blood coagulation. Since saliva and parasites are co-injected in the host during natural transmission, we evaluated the anticoagulant properties of sandfly saliva in counteracting the procoagulant activity of L. amazonensis . Lu. longipalpis saliva reverses plasma clotting promoted by promastigotes. It also inhibits thrombin formation by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS vesicles or in L. amazonensis . Sandfly saliva inhibits factor X activation by the intrinsic tenase complex assembled on PC/PS vesicles and blocks factor Xa catalytic activity. Altogether our results show that metacyclic promastigotes of L. amazonensis are procoagulant due to PS exposure. Notably, this effect is efficiently counteracted by sandfly saliva.
Resumo:
Studies on human genetic variations are a useful source of knowledge about human immunodeficiency virus (HIV)-1 infection. The Langerin protein, found at the surface of Langerhans cells, has an important protective role in HIV-1 infection. Differences in Langerin function due to host genetic factors could influence susceptibility to HIV-1 infection. To verify the frequency of mutations in the Langerin gene, 118 samples from HIV-1-infected women and 99 samples from HIV-1-uninfected individuals were selected for sequencing of the promoter and carbohydrate recognition domain (CRD)-encoding regions of the Langerin gene. Langerin promoter analysis revealed two single nucleotide polymorphisms (SNPs) and one mutation in both studied groups, which created new binding sites for certain transcription factors, such as NFAT5, HOXB9.01 and STAT6.01, according to MatInspector software analysis. Three SNPs were observed in the CRD-encoding region in HIV-1-infected and uninfected individuals: p.K313I, c.941C>T and c.983C>T. This study shows that mutations in the Langerin gene are present in the analysed populations at different genotypic and allelic frequencies. Further studies should be conducted to verify the role of these mutations in HIV-1 susceptibility.