24 resultados para third domain
Resumo:
The objective of this study is to understand the structural flexibility and curvature of the E2 protein of human papillomavirus type 18 using molecular dynamics (6 ns). E2 is required for viral DNA replication and its disruption could be an anti-viral strategy. E2 is a dimer, with each monomer folding into a stable open-faced β-sandwich. We calculated the mobility of the E2 dimer and found that it was asymmetric. These different mobilities of E2 monomers suggest that drugs or vaccines could be targeted to the interface between the two monomers.
Resumo:
Resistance of Helicobacter pylori to clarithromycin is characterised by simple point mutations in the 23S ribosomal RNA (rRNA) gene and is responsible for the majority of cases of failure to eradicate this bacterium. In this paper, we characterised the variability of the 23S rRNA gene in biopsies of patients with gastric pathologies in the eastern Amazon (Northern Region of Brazil) using PCR and sequencing. A total of 49 sequences of H. pylori strains were analysed and of those, 75.6% presented nucleotide substitutions: A2142G (3.3%), T2182C (12.9%), G2224A (6.45%), T2215C (61.3%), A2192G (3.3%), G2204C (6.4%) and T2221C (6.4%). Of the mutations identified, four are known mutations related to cases of resistance and 16.1% are not yet described, revealing a high prevalence of mutations in the H. pylori 23S rRNA gene among the strains circulating in the in the eastern Amazon. The high prevalence in individuals with gastric pathologies in the Northern Region of Brazil demonstrates the need for characterising the profile of these strains to provide correct therapy for patients, considering that mutations in this gene are normally associated with resistance to the primary medication used in controlling H. pylori infection.
Resumo:
Description of the third larval instar and pupa of Geniates barbatus Kirby (Coleoptera, Scarabaeidae, Rutelinae). The last larval instar and pupa of the Neotropical Geniatini Geniates barbatus Kirby, 1819 are described and illustrated. Biological notes and a key to the third instar larvae of Neotropical Rutelinae are also provided.
Resumo:
Description of the third instar larvae of five species of Cyclocephala (Coleoptera, Melolonthidae, Dynastinae) from Mexico. Larvae of four species of Cyclocephala are described for the first time based on specimens collected in Mexican localities: C. barrerai Martínez, 1969 from Puebla, C. sinaloae Howden & Endrödi, 1966 from Sinaloa, C. fasciolata Bates, 1888 from Veracruz, and C. jalapensis Casey, 1915 from Hidalgo. Larva of C. lunulata Burmeister, 1847, is redescribed based on specimens from the Mexican states of Morelos, Puebla, and Veracruz. Diagnostic structures are illustrated and the differences and similarities of each species with other previously described larvae of the genus are commented.
Resumo:
Morphological traits, such as size and shape, may reflect a combination of ecological and evolutionary responses by organisms. Ants have been used to evaluate the relationship between the environment and species coexistence and morphology. In the present study, we analyzed the morphology of workers of Gnamptogenys striatula Mayr in different landscapes from the Atlantic Domain in southeastern Brazil, focusing on the variation in the morphological attributes of these populations compared to those from a dense ombrophilous forest. Eighteen morphological traits of functional importance for interactions between workers and the environment were measured to characterize the size and shape of the workers. In general, the results show that ants of urban areas possess some morphological attributes of smaller size, with highly overlapped morphological space between the populations in forested ecosystems. Further, some of the traits related to predation were relatively smaller in modified land areas than in the populations from preserved areas of dense ombrophilous forest. These results help broaden the knowledge regarding morphological diversity in G. striatula, suggesting that the characterization of the morphology may be important to quantify the effects of land use on morphological diversity, and presumably, to facilitate the use of ants as biological indicators.
Resumo:
An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux) in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range).
Resumo:
Wastewater application to soil is an alternative for fertilization and water reuse. However, particular care must be taken with this practice, since successive wastewater applications can cause soil salinization. Time-domain reflectometry (TDR) allows for the simultaneous and continuous monitoring of both soil water content and apparent electrical conductivity and thus for the indirect measurement of the electrical conductivity of the soil solution. This study aimed to evaluate the suitability of TDR for the indirect determination of the electrical conductivity (ECse) of the saturated soil extract by using an empirical equation for the apparatus TDR Trase 6050X1. Disturbed soil samples saturated with swine wastewater were used, at soil proportions of 0, 0.45, 0.90, 1.80, 2.70, and 3.60 m³ m-3. The probes were equipped with three handmade 0.20 cm long rods. The fit of the empirical model that associated the TDR measured values of electrical conductivity (EC TDR) to ECse was excellent, indicating this approach as suitable for the determination of electrical conductivity of the soil solution.
Resumo:
Due to the difficulty of estimating water percolation in unsaturated soils, the purpose of this study was to estimate water percolation based on time-domain reflectometry (TDR). In two drainage lysimeters with different soil textures TDR probes were installed, forming a water monitoring system consisting of different numbers of probes. The soils were saturated and covered with plastic to prevent evaporation. Tests of internal drainage were carried out using a TDR 100 unit with constant dielectric readings (every 15 min). To test the consistency of TDR-estimated percolation levels in comparison with the observed leachate levels in the drainage lysimeters, the combined null hypothesis was tested at 5 % probability. A higher number of probes in the water monitoring system resulted in an approximation of the percolation levels estimated from TDR - based moisture data to the levels measured by lysimeters. The definition of the number of probes required for water monitoring to estimate water percolation by TDR depends on the soil physical properties. For sandy clay soils, three batteries with four probes installed at depths of 0.20, 0.40, 0.60, and 0.80 m, at a distance of 0.20, 0.40 and 0.6 m from the center of lysimeters were sufficient to estimate percolation levels equivalent to the observed. In the sandy loam soils, the observed and predicted percolation levels were not equivalent even when using four batteries with four probes each, at depths of 0.20, 0.40, 0.60, and 0.80 m.
Resumo:
In the search for high efficiency in root studies, computational systems have been developed to analyze digital images. ImageJ and Safira are public-domain systems that may be used for image analysis of washed roots. However, differences in root properties measured using ImageJ and Safira are supposed. This study compared values of root length and surface area obtained with public-domain systems with values obtained by a reference method. Root samples were collected in a banana plantation in an area of a shallower Typic Carbonatic Haplic Cambisol (CXk), and an area of a deeper Typic Haplic Ta Eutrophic Cambisol (CXve), at six depths in five replications. Root images were digitized and the systems ImageJ and Safira used to determine root length and surface area. The line-intersect method modified by Tennant was used as reference; values of root length and surface area measured with the different systems were analyzed by Pearson's correlation coefficient and compared by the confidence interval and t-test. Both systems ImageJ and Safira had positive correlation coefficients with the reference method for root length and surface area data in CXk and CXve. The correlation coefficient ranged from 0.54 to 0.80, with lowest value observed for ImageJ in the measurement of surface area of roots sampled in CXve. The IC (95 %) revealed that root length measurements with Safira did not differ from that with the reference method in CXk (-77.3 to 244.0 mm). Regarding surface area measurements, Safira did not differ from the reference method for samples collected in CXk (-530.6 to 565.8 mm²) as well as in CXve (-4231 to 612.1 mm²). However, measurements with ImageJ were different from those obtained by the reference method, underestimating length and surface area in samples collected in CXk and CXve. Both ImageJ and Safira allow an identification of increases or decreases in root length and surface area. However, Safira results for root length and surface area are closer to the results obtained with the reference method.