63 resultados para sulfated phenols
Resumo:
Cancer development is a long-term multistep process which allows interventional measure before the clincial disease emerges. the detection of natural substances which can block the process of carcinogenesis is a important as the identification of anti-tumoral drugs since they might be used in chemoprevention of cancer in high-risk groups. In vivo rodent models of chemical caecinogenesis have been used to study plant-derived inhibitors of carcinofenesis such as indols, coumarins, isothiocyanates, flavones, phenols and allyl-sulfides. Since the standard in vivo rodent bioassay is prolonged and expensive, shorter reliable protocols are needed. Two in vivo medium-term protocols for evaluation of modifiers of carcinogenesis are presented, one related to liver and the other to bladder cancer. Both protocols use rats, last 8 and 36 weeks and are based on the two-step concept of carcinogenesis: initiation and promotion. The protocols use respectively the development of altered foci of hepatocytes expressing immunochistochemically the placental form of gluthation S-transferase and the appearence of pre-neoplastic urothelium and papillomas as the "end-points". the use of these protocols for detection of plantpderived inhibitors of carcinogenesis appear warranted.
Resumo:
Alpinia speciosa Schum or A. nutans is a plant of the Zingiberanceae family, Known popularly as "colony" (colônia) and used as a diuretic and to control hypertensión. We have determinated the concentration of Na+ and K+ found in the alcoholic extract and in the tea concoction. They contained 51.0mEq Na+, and 132 mEq K+ in the extract, and 0,0 mEq of Na+ and 26 mEq K+ in the tea. Phytochemical analysis of the leaves demonstrated the presence of catecquic tanins, phenols and alkaloids, and also some essential oils. When injected intra-peritoneally the hydroalcoholic extract, in range of 100 a 1400 mg/Kg, (or 2500-18000 mg/Kg orally) produced in mice: writhing, psychomorot excitation, hypokinesis and pruritus. The LD50 by ip was 0.760 + or - 0.126 g/Kg and 10.0 + or - 2.5 g/Kg by oral administration for the hydroalcoholic extract. Subacute toxicity made injecting daily for 30 days the LD10 in rats caused an increase in transaminases and lactate dehydrogenase, whereas other parameters such as nlood glucose, urea and creatinine were normal. A histopathological analysis of liver, spleen, gut, lung and heart showed no alterations. The drug also produced a prolongation of the sleeping time. The hydroalcoholic extract induced int he rat and in the dog a dose-dependent fall in blood pressure in doses of 10 to 30 mg/Kg. In isolated atria the extract induced a reduction of the frequnecy and in the inotropic responses. Neither the extract nor the tea had an effect on the diuresis of the rat.
Resumo:
The objective of this work was to evaluate the use of basic density and pulp yield correlations with some chemical parameters, in order to differentiate an homogeneous eucalyptus tree population, in terms of its potential for pulp production or some other technological applications. Basic density and kraft pulp yield were determined for 120 Eucalyptus globulus trees, and the values were plotted as frequency distributions. Homogenized samples from the first and fourth density quartiles and first and fourth yield quartiles were submitted to total phenols, total sugars and methoxyl group analysis. Syringyl/guaiacyl (S/G) and syringaldehyde/vanillin (S/V) ratios were determined on the kraft lignins from wood of the same quartiles. The results show the similarity between samples from high density and low yield quartiles, both with lower S/G (3.88-4.12) and S/V (3.99-4.09) ratios and higher total phenols (13.3-14.3 g gallic acid kg-1 ). Woods from the high yield quartile are statistically distinguished from all the others because of their higher S/G (5.15) and S/V (4.98) ratios and lower total phenols (8.7 g gallic acid kg-1 ). Methoxyl group and total sugars parameters are more adequate to distinguish wood samples with lower density.
Resumo:
ABSTRACT Fertilization of temperate fruit trees, such as grapevine ( Vitis spp.), apple ( Malus domestica), and pear ( Pyrus communis) is an important tool to achive maximum yield and fruit quality. Fertilizers are provided when soil fertility does not allow trees to express their genetic potential, and time and rate of application should be scheduled to promote fruit quality. Grapevine berries, must and wine quality are affected principally by N, that regulate the synthesis of some important compounds, such as anthocyanins, which are responsible for coloring of the must and the wine. Fermenation of the must may stop in grapes with low concentration of N because N is requested in high amount by yeasts. An N excess may increase the pulp to peel ratio, diluting the concentration of anthocyanins and promoting the migration of anthocyanins from berries to the growing plant organs; a decrease of grape juice soluble solid concentration is also expected because of an increase in vegetative growth. Potassium is also important for wine quality contributing to adequate berry maturation, concentration of sugars, synthesis of phenols and the regulation of pH and acidity. In apple and pear, Ca and K are important for fruit quality and storage. Potassium is the most important component of fruit, however, any excess should be avoided and an adequate K:Ca balance should be achieved. Adequate concentration of Ca in the fruit prevents pre- and post-harvest fruit disorders and, at the same time, increases tolerance to pathogens. Although N promotes adequate growth soil N availability should be monitored to avoid excessive N uptake that may decrease fruit skin color and storability.
Resumo:
This review is about the aliphatic, alicyclic and aromatic compounds (non-heterocyclic compounds) that are present in the volatile fractions of roasted coffees. Herein, the contents, aroma precursors and the sensorial properties of volatile phenols, aldehydes, ketones, alcohols, ethers, hydrocarbons, carboxylic acids, anhydrides, esters, lactones, amines and sulphur compounds are discussed. Special attention is given to the compounds of these groups that are actually important to the final aroma of roasted coffees.
Resumo:
Phenols are widely used in many areas and commonly found as industrial by-products. A great number of agricultural and industrial activities realise phenolic compounds in the environmental. Waste phenols are produced mainly by the wood-pulp industry and during production of synthetic polymers, drugs, plastics, dyes, pesticides and others. Phenols are also released into the environmental by the degradation of pesticides with phenolic skeleton. The phenols level control is very important for the environmental protection. Amperometric biosensor has shown the feasibility to complement laboratory-based analytical methods for the determination of phenolic compounds, providing alternatives to conventional methods which have many disadvantages. This brief review considers the evolution of an approach to amperometric measurement using the catalytic properties of some enzymes for phenolic compounds monitoring.
Resumo:
This research was developed by considering that the solid waste produced in the process of pig iron production represents the loss of raw materials and the increase in environmental problem. The charcoal based mini blast-furnace off gases dust named CHARCOK was collected from SIDERPA ¾ Siderúrgica Paulino Ltda, located in Sete Lagoas, Minas Gerais. The Charcok was characterized and classified according to ABNT (Associação Brasileira de Normas Técnicas) standard. The results showed that the Charcok should be classified as Class I Wastes ¾ "Hazard Wastes" because of its high concentration of phenols (54.5mg C6H5OH/kg). The Charcok had high concentration of iron and charcoal which can be used as energy source.
Resumo:
The main purpose of this work is the identification and quantification of phenolic compounds in coal tar samples from a ceramics factory in Cocal (SC), Brazil. The samples were subjected to preparative scale liquid chromatography, using Amberlyst A-27TM ion-exchange resin as stationary phase. The fractions obtained were classified as "acids" and "BN" (bases and neutrals). The identification and quantification of phenols, in the acid fraction, was made by gas chromatography coupled to mass spectrometry (GC/MS). Nearly twenty-five phenols were identified in the samples and nine of them were also quantified. The results showed that coal tar has large quantities of phenolic compounds of industrial interest.
Resumo:
This paper discusses the results obtained with homogeneous catalytic ozonation [Mn (II) and Cu (II)] in phenol degradation. The reduction of total phenols and total organic carbon (TOC) and the ozone consumption were evaluated. The efficiency in phenol degradation (total phenol removal) at pH 3, with the catalytic process (Mn (II)), increased from 37% to 55% while the TOC removal increased from 4 to 63% in a seven-minute treatment. The ozonation process efficiency at pH 10 was 43% and 39% for phenol and TOC removal, respectively. The presence of both metallic ions (Mn2+ and Cu+2) in the ozonation process resulted in a positive effect.
Resumo:
The bioactive compounds and antioxidant activity presented by Conilon coffee (C. Canephora) variety, produced in the Espírito Santo State, Brazil, were quantified. The light roast coffee showed the highest level of total phenols, trigonelline, caffeic and chlorogenic acids. The proanthocyanidin level was the highest for dark roast coffee, while caffeine level didn't show significative changes for the light and middle roast coffees. All the Conilon coffee extracts showed antioxidant activity depending on bioactive compounds concentration and roasting degree. The coffee samples submitted to a light roasting degree showed the highest antioxidant activity.
Resumo:
The new millennium is marked by a growing search for renewable fuels and alternative raw materials from biomass in the petrochemicals industry. However, there are many challenges to overcome regarding technological and human resources aspects. In this scenario, cashew nut oil, which is rich in natural phenols, is considered to be very promising for the development of synthetic and functional products and as a feedstock for production of fine chemicals and a wide variety of new materials.
Resumo:
The restricted availability of water sources suitable for consumption and high costs for obtaining potable water has caused an increase of the conscience concerning the use. Thus, there is a high demand for "environmentally safe methods" which are according to the principles of Green Chemistry. Moreover, these methods should be able to provide reliable results for the analysis of water quality for various pollutants, such as phenol. In this work, greener alternatives for sample preparation for phenol determination in aqueous matrices are presented, which include: liquid phase microextraction, solid phase microextraction, flow analysis, cloud point extraction and aqueous two-phase systems.
Resumo:
The aim of this work is to propose a methodology to evaluate the evolution of the pore blockage of limestone during the sulfation reaction. The experiments were performed for a national limestone (dolomite) with average particle size of 545 μm in interrupted sulfation tests were conducted at seven different times and at three different temperatures of the process. The empirical data were obtained from porosimetry tests to establish BET surface area, volume and average size of pore and distribution of pore sizes of the sulfated samples. Thermogravimetric tests were performed to evaluate the preparation methodology of the samples used in the porosimetry tests.
Resumo:
In this work sulfated zirconia (SZr) and activated carbon/SZr composites produced by impregnation method with or without heating treatment step (CABC/SZr-I and CABC/SZr-I SC) and by the method of synthesis of SZr on the carbon (CABC/SZr-S) was used as catalysts in the esterification reactions of fatty acids. The SZr presented very active, conversions higher than 90% were obtained after 2 h of reaction. The activity of the composite CABC/SZr-I20%SC was up to 92%, however, this was directly related to time and temperature reactions. CABC/SZr-I and CABC/SZr-S were less active in esterification reactions, what could be attributed to its low acidity
Resumo:
The triplet excited state of xanthone was generated and characterized by laser flash photolysis in acetonitrile (λmax=620 nm; t=1.8 ms) and in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [bmim.PF6] (λmax=620 nm; t=3.0 ms). It reacts with phenols yielding the corresponding xanthone ketyl radical. Stern-Volmer plots for the reaction of triplet xanthone with phenols led to the determination of absolute rate constants for phenolic hydrogen abstraction in the order of ~10(9) Lmol-1s-1 in acetonitrile and ~10(8) Lmol-1s-1 in [bmim.PF6]. The lower diffusioncontrolled rate constant for [bmim.PF6] is responsible for the difference in the phenolic hydrogen abstraction rate constants in this solvent.