182 resultados para sugarcane borer
Resumo:
Sugarcane production should be integrated with crop diversification with a view to competitive and sustainable results in economic, social and environmental aspects. The purpose of this study was to assess the influence of different soil uses during the sugarcane fallow period on the chemical and physical properties of eutroferric Red Latosol - LVef (Oxisol) and Acric Latosol - LVw (Acric Oxisol), in Jaboticabal, São Paulo State, Brazil (21º14'05'' S, 48º17'09'' W, 600 m asl). A randomized block design was used with five replications and four treatments, consisting of different soil uses (crops) in the sugarcane fallow period: soybean only, soybean/fallow/soybean, soybean/millet/soybean, and soybean/sunn hemp/soybean. After two soybean crops, the LVef chemical properties remained at intermediate to high levels; while those of the LVw, classified as intermediate to high in the beginning, increased to high levels. Thus, the different soil uses during the sugarcane fallow period allowed the maintenance of LVef fertility levels and the improvement of those of the LVw. Two soybean crops increased macroporosity in the 0.0-0.1 m layer of the LVef; reduced soil aggregates in the 0.0-0.1 and 0.1-0.2 m layers of both soils, and reduced aggregate stability in these two layers of the LVw. Planting pearl millet or sunn hemp between the two soybean growing seasons promoted the formation of larger soil aggregates in the surface layer (0.0-0.1 m) of the LVw.
Resumo:
The quantification of ammonia (NH3) losses from sugarcane straw fertilized with urea can be performed with collectors that recover the NH3 in acid-treated absorbers. Thus, the use of an open NH3 collector with a polytetrafluoroethylene (PTFE)-wrapped absorber is an interesting option since its cost is low, handling easy and microclimatic conditions irrelevant. The aim of this study was to evaluate the efficiency of an open collector for quantifying NH3-N volatilized from urea applied over the sugarcane straw. The experiment was carried out in a sugarcane field located near Piracicaba, São Paulo, Brazil. The NH3-N losses were estimated using a semi-open static collector calibrated with 15N (reference method) and an open collector with an absorber wrapped in PTFE film. Urea was applied to the soil surface in treatments corresponding to rates of 50, 100, 150 and 200 kg ha-1 N. Applying urea-N fertilizer on sugarcane straw resulted in losses NH3-N up to 24 % of the applied rate. The amount of volatile NH3-N measured in the open and the semi-open static collector did not differ. The effectiveness of the collection system varied non-linearly, with an average value of 58.4 % for the range of 100 to 200 kg ha-1 of urea-N. The open collector showed significant potential for use; however, further research is needed to verify the suitability of the proposed method.
Resumo:
A large variety of techniques have been used to measure soil CO2 released from the soil surface, and much of the variability observed between locations must be attributed to the different methods used by the investigators. Therefore, a minimum protocol of measurement procedures should be established. The objectives of this study were (a) to compare different absorption areas, concentrations and volumes of the alkali trapping solution used in closed static chambers (CSC), and (b) to compare both, the optimized alkali trapping solution and the soda-lime trapping using CSC to measure soil respiration in sugarcane areas. Three CO2 absorption areas were evaluated (7; 15 and 20 % of the soil emission area or chamber); two volumes of NaOH (40 and 80 mL) at three concentrations (0.1, 0.25 and 0.5 mol L-1). Three different types of alkaline traps were tested: (a), 80 mL of 0.5 mol L-1 NaOH in glass containers, absorption area 15 % (V0.5); (b) 40 mL of 2 mol L-1 NaOH retained in a sponge, absorption area 80 % (S2) and (c) 40 g soda lime, absorption area 15 % (SL). NaOH concentrations of 0.5 mol L-1 or lower underestimated the soil CO2-C flux or CO2 flux. The lower limit of the alkali trap absorption area should be a minimum of 20 % of the area covered by the chamber. The 2 mol L-1 NaOH solution trap (S2) was the most efficient (highest accuracy and highest CO2 fluxes) in measuring soil respiration.
Resumo:
Considering nitrogen mineralization (N) of soil organic matter is a key aspect for the efficient management of N fertilizers in agricultural systems. Long-term aerobic incubation is the standard technique for calibrating the chemical extraction methods used to estimate the potentially mineralizable N in soil. However, the technique is laborious, expensive and time-consuming. In this context, the aims of this study were to determine the amount of soil mineralizable N in the 0-60 cm layer and to evaluate the use of short-term anaerobic incubation instead of long-term aerobic incubation for the estimation of net N mineralization rates in soils under sugarcane. Five soils from areas without previous N fertilization were used in the layers 0-20, 20-40 and 40-60 cm. Soil samples were aerobically incubated at 35 ºC for 32 weeks or anaerobically incubated (waterlogged) at 40 ºC for seven days to determine the net soil N mineralization. The sand, silt and clay contents were highly correlated with the indexes used for predicting mineralizable N. The 0-40 cm layer was the best sampling depth for the estimation of soil mineralizable N, while in the 40-60 cm layer net N mineralization was low in both incubation procedures. Anaerobic incubation provided reliable estimates of mineralizable N in the soil that correlated well with the indexes obtained using aerobic incubation. The inclusion of the pre-existing NH4+-N content improved the reliability of the estimate of mineralizable N obtained using anaerobic incubation.
Resumo:
Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si) fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L) were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si), three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay), with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI) of sugarcane increased over time, and was highest in RA.
Resumo:
Currently, sugarcane plays an important global role, particularly with a view to alternative energy sources. Thus, in a sugarcane field of the mill Vale do Paraná S/A Álcool e Açúcar, Rubineia, São Paulo State, managed under two green cane harvest systems (cane trash left on and cane trash removed from the soil), Pearson and spatial correlations between the sugarcane yield (variety RB855035 in the third cut) and soil physical and chemical properties were studied to identify the property best correlated with stalk yield and the best harvest method. For this purpose, two geostatistical grids (121 sampling points on 1.30 ha) were installed on a eutrophic Red Argisol (homogeneous slope of 0.065 m m-1), in 2011, to determine the properties: stalk yield and sugarcane plant population, and soil resistance to penetration, gravimetric moisture, bulk density, and carbon stock, in the layers 0-0.20 and 0.20-0.40 m. The data were analyzed by descriptive, linear correlation and geostatistical analysis. In both treatments, the property stand density was best correlated with sugarcane yield (r = 0.725 in the trash mulching treatment - TM and r = 0.769 in the trash removal treatment - TR). However, in relation to the soil properties, bulk density (0-0.20 m) was best correlated (r = 0.305 in TM, r = 0.211 in TR). Similarly, from the spatial point of view, stand density was the property that best explained the sugarcane yield. However, in the TM treatment the density (0.20-0.40 m) was the only soil property spatially correlated with stalk yield. The carbon stock in the soil of the TM was 11.5 % higher than in the TR treatment. Results of the TM treatment were best, also with regard to soil management and conservation.
Resumo:
The cultivation of sugarcane with intensive use of machinery, especially for harvest, induces soil compaction, affecting the crop development. The control of agricultural traffic is an alternative of management in the sector, with a view to preserve the soil physical quality, resulting in increased sugarcane root growth, productivity and technological quality. The objective of this study was to evaluate the physical quality of an Oxisol with and without control traffic and the resulting effects on sugarcane root development, productivity and technological quality. The following managements were tested: no traffic control (NTC), traffic control consisting of an adjustment of the track width of the tractor and sugarcane trailer (TC1) and traffic control consisting of an adjustment of the track width of the tractor and trailer and use of an autopilot (TC2). Soil samples were collected (layers 0.00-0.10; 0.10-0.20 and 0.20-0.30 m) in the plant rows, inter-row center and seedbed region, 0.30 m away from the plant row. The productivity was measured with a specific weighing scale. The technological variables of sugarcane were measured in each plot. Soil cores were collected to analyze the root system. In TC2, the soil bulk density and compaction degree were lowest and total porosity and macroporosity highest in the plant row. Soil penetration resistance in the plant row, was less than 2 MPa in TC1 and TC2. Soil aggregation and total organic carbon did not differ between the management systems. The root surface and volume were increased in TC1 and TC2, with higher productivity and sugar yield than under NTC. The sugarcane variables did not differ between the managements. The soil physical quality in the plant row was preserved under management TC1 and TC2, with an improved root development and increases of 18.72 and 20.29 % in productivity and sugar yield, respectively.
Resumo:
The presence of trash from the mechanical harvest of green cane on sugarcane plantations promotes changes in the agricultural management, for example, in the mechanical cultural practices of ratoon cane in-between the rows and nitrogen (N) fertilization. The goal of this study was to evaluate the performance of sugarcane in different harvest systems, associated to the mechanical cultural practices in interrows and N rates. The study was carried out on a sugarcane plantation in Sales Oliveira, São Paulo, Brazil, with the sugarcane variety SP81-3250, on soil classified as Acrudox, in a randomized block design with split-split plots and four replications. The main treatments consisted of harvest systems (harvesting green cane or burnt cane), the secondary treatment consisted of the mechanical cultural practices in the interrows and the tertiary treatments were N rates (0, 30, 60, 90, 120 and 160 kg ha-1), using ammonium nitrate (33 % N) as N source. The harvest systems did not differ in sugarcane yield (tons of cane per hectare - TCH), but in burnt cane, the pol percent and total sugar recovery (TSR) were higher. This could be explained by the higher quantity of plant impurities in the harvested raw material in the system without burning, which reduces the processing quality. Mechanical cultural practices in the interrows after harvest had no effect on cane yield and sugar quality, indicating that this operation can be omitted in areas with mechanical harvesting. The application of N fertilizer at rates of 88 and 144 kg ha-1 N, respectively, increased stalk height and TCH quadratically to the highest values for these variables. For the sugar yield per hectare (in pol %), N fertilization induced a linear increase.
Resumo:
The sugarcane industry, a strategic crop in Brazil, requires technological improvements in production efficiency to increase the crop energy balance. Among the various currently studied alternatives, inoculation with diazotrophic bacteria proved to be a technology with great potential. In this context, the efficiency of a mixture of bacterial inoculant was evaluated with regard to the agronomic performance and N nutrition of sugarcane. The experiment was carried out on an experimental field of Embrapa Agrobiologia, in Seropédica, Rio de Janeiro, using a randomized block, 2 × 3 factorial design (two varieties and three treatments) with four replications, totaling 24 plots. The varieties RB867515 and RB72454 were tested in treatments consisting of: inoculation with diazotrophic bacteria, N-fertilized control with 120 kg ha-1 N and absolute control (no inoculation and no N fertilizer). The inoculum was composed of five strains of five diazotrophic species. The yield, dry matter accumulation, total N in the shoot dry matter and the contribution of N by biological fixation were evaluated, using the natural 15N abundance in non-inoculated sugarcane as reference. The bacterial inoculant increased the stalk yield of variety RB72454 similarly to fertilization with 120 kg ha-1 N in the harvests of plant-cane and first ratoon crops, however the contribution of biological N fixation was unchanged by inoculation, indicating that the benefits of the inoculant in sugarcane may have resulted from plant growth promotion.
Resumo:
Management systems involving crop rotation, ground cover species and reduced soil tillage can improve the soil physical and biological properties and reduce degradation. The primary purpose of this study was to assess the effect of various crops grown during the sugarcane fallow period on the production of glomalin and arbuscular mycorrhizal fungi in two Latosols, as well as their influence on soil aggregation. The experiment was conducted on an eutroferric Red Latosol with high-clay texture (680 g clay kg-1) and an acric Red Latosol with clayey texture (440 g kg-1 clay) in Jaboticabal (São Paulo State, Brazil). A randomized block design involving five blocks and four crops [soybean (S), soybean/fallow/soybean (SFS), soybean/millet/soybean (SMS) and soybean/sunn hemp/soybean (SHS)] was used to this end. Soil samples for analysis were collected in June 2011. No significant differences in total glomalin production were detected between the soils after the different crops. However, total external mycelium length was greater in the soils under SMS and SHS. Also, there were differences in easily extractable glomalin, total glomalin and aggregate stability, which were all greater in the eutroferric Red Latosol than in the acric Red Latosol. None of the cover crops planted in the fallow period of sugarcane improved aggregate stability in either Latosol.
Resumo:
In the south-central region of Brazil, there is a trend toward reducing the sugarcane inter-harvest period and increasing traffic of heavy harvesting machinery on soil with high water content, which may intensify the compaction process. In this study, we assessed the structural changes of a distroferric Red Latosol (Oxisol) by monitoring soil water content as a function of the Least Limiting Water Range (LLWR) and quantified its effects on the crop yield and industrial quality of the first ratoon crop of sugarcane cultivars with different maturation cycles. Three cultivars (RB 83-5054, RB 84-5210 and RB 86-7515) were subjected to four levels of soil compaction brought about by a differing number of passes of a farm tractor (T0 = soil not trafficked, T2 = 2 passes, T10 = 10 passes, and T20 = 20 passes of the tractor in the same place) in a 3 × 4 factorial arrangement with three replications. The deleterious effects on the soil structure from the farm machinery traffic were limited to the surface layer (0-10 cm) of the inter-row area of the ratoon crop. The LLWR dropped to nearly zero after 20 tractor passes between the cane rows. We detected differences among the cultivars studied; cultivar RB 86-7515 stood out for its industrial processing quality, regardless of the level of soil compaction. Monitoring of soil moisture in the crop showed exposure to water stress conditions, although soil compaction did not affect the production variables of the sugarcane cultivars. We thus conclude that the absence of traffic on the plant row maintained suitable soil conditions for plant development and may have offset the harmful effects of soil compaction shown by the high values for bulk density between the rows of the sugarcane cultivars.
Variability of soil fertility properties in areas planted to sugarcane in the State of Goias, Brazil
Resumo:
Soil sampling should provide an accurate representation of a given area so that recommendations for amendments of soil acidity, fertilization and soil conservation may be drafted to increase yield and improve the use of inputs. The aim of this study was to evaluate the variability of soil fertility properties of Oxisols in areas planted to sugarcane in the State of Goias, Brazil. Two areas of approximately 8,100 m² each were selected, representing two fields of the Goiasa sugarcane mill in Goiatuba. The sugarcane crop had a row spacing of 1.5 m and subsamples were taken from 49 points in the row and 49 between the row with a Dutch auger at depths of 0.0-0.2 and 0.2-0.4 m, for a total of 196 subsamples for each area. The samples were individually subjected to chemical analyses of soil fertility (pH in CaCl2, potential acidity, organic matter, P, K, Ca and Mg) and particle size analysis. The number of subsamples required to compose a sample within the acceptable ranges of error of 5, 10, 20 and 40 % of each property were computed from the coefficients of variation and the Student t-value for 95 % confidence. The soil properties under analysis exhibited different variabilities: high (P and K), medium (potential acidity, Ca and Mg) and low (pH, organic matter and clay content). Most of the properties analyzed showed an error of less than 20 % for a group of 20 subsamples, except for P and K, which were capable of showing an error greater than 40 % around the mean. The extreme variability in phosphorus, particularly at the depth of 0.2-0.4 m, attributed to banded application of high rates of P fertilizers at planting, places limitations on assessment of its availability due to the high number of subsamples required for a composite sample.
Resumo:
The planting of diversified crops during the sugarcane fallow period can improve the chemical and physical properties and increase the production potential of the soil for the next sugarcane cycle. The primary purpose of this study was to assess the influence of various soil uses during the sugarcane fallow period on soil chemical and physical properties and productivity after the first sugarcane harvest. The experiment was conducted in two areas located in Jaboticabal, São Paulo State, Brazil (21º 14' 05'' S, 48º 17' 09'' W) with two different soil types, namely: an eutroferric Red Latosol (RLe) with high-clay texture (clay content = 680 g kg-1) and an acric Red Latosol (RLa) with clayey texture (clay content = 440 g kg-1). A randomized block design with five replications and four treatments (crop sequences) was used. The crop sequences during the sugarcane fallow period were soybean/millet/soybean, soybean/sunn hemp/soybean, soybean/fallow/soybean, and soybean. Soil use was found not to affect chemical properties and sugarcane productivity of RLe or RLa. The soybean/millet/soybean sequence improved aggregation in the acric Latosol.
Resumo:
Improvements in working conditions, sustainable production, and competitiveness have led to substantial changes in sugarcane harvesting systems. Such changes have altered a number of soil properties, including iron oxides and organic matter, as well as some chemical properties, such as the maximum P adsorption capacity of the soil. The aim of this study was to characterize the relationship between iron oxides and the quality of organic matter in sugarcane harvesting systems. For that purpose, two 1 ha plots in mechanically and manually harvested fields were used to obtain soil samples from the 0.00-0.25 m soil layer at 126 different points. The mineralogical, chemical, and physical results were subjected to descriptive statistical analyses, such as the mean comparison test, as well as to multivariate statistical and principal component analyses. Multivariate tests allowed soil properties to be classified in two different groups according to the harvesting method: manual harvest with the burning of residual cane, and mechanical harvest without burning. The mechanical harvesting system was found to enhance pedoenvironmental conditions, leading to changes in the crystallinity of iron oxides, an increase in the humification of organic matter, and a relative decrease in phosphorus adsorption in this area compared to the manual harvesting system.
Resumo:
Lime application recommendations for amendment of soil acidity in sugarcane were developed with a burnt cane harvesting system in mind. Sugarcane is now harvested in most areas without burning, and lime application for amendment of soil acidity in this system in which the sugarcane crop residue remains on the ground has been carried out without a scientific basis. The aim of this study was to evaluate the changes in soil acidity and stalk and sugar yield with different rates of surface application of calcium, magnesium silicate, and gypsum in ratoon cane. The experiment was performed after the 3rd harvest of the variety SP 81-3250 in a commercial green sugarcane plantation of the São Luiz Sugar Mill (47º 25' 33" W; 21º 59' 46" S), located in Pirassununga, São Paulo, in southeast Brazil. A factorial arrangement of four Ca-Mg silicate rates (0, 850, 1700, and 3400 kg ha-1) and two gypsum rates (0 and 1700 kg ha-1) was used in the experiment. After 12 months, the experiment was harvested and technological measurements of stalk and sugar yield were made. After harvest, soil samples were taken at the depths of 0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.40-0.60 m in all plots, and the following determinations were made: soil pH in CaCl2, organic matter, P, S, K, Ca, Mg, H+Al, Al, Si, and base saturation. The results show that the application of gypsum reduced the exchangeable Al3+ content and Al saturation below 0.05 m, and increased the Ca2+ concentration in the whole profile, the Mg2+ content below 0.10 m, K+ below 0.4 m, and base saturation below 0.20 m. This contributed to the effect of surface application of silicate on amendment of soil acidity reaching deeper layers. From the results of this study, it may be concluded that the silicate rate recommended may be too low, since the greater rates used in this experiment showed greater reduction in soil acidity, higher levels of nutrients at greater depths and an increase in stalk and sugar yield.