51 resultados para soluble icam-1
Resumo:
Dysregulation of the skin immune system (SIS) could explain the high prevalence of skin disorders in HIV+ individuals. The present study was carried out to determine whether alterations in the cell population of SIS and epidermal immunoactivation occur in the normal skin of HIV+ individuals. Forty-five biopsies were taken from the normal upper arm skin of 45 HIV+ patients and of 15 healthy controls. HIV+ individuals were divided into three categories according to their CD4 cell blood count (<200, 200-499 and ³500/µl). Hematoxylin-eosin was used to stain tissue sections for morphological analysis and immunohistochemistry was used for the evaluation of the frequency of macrophages, Langerhans cells, and CD lymphocyte subsets. In addition, semiquantitative analysis of LFA-1, ICAM-1 and HLA-DR was determined in epidermal cells. Macrophages, Langerhans cells, and CD lymphocyte subsets did not differ significantly between any of the patient categories and the control group. When all HIV+ individuals were compared as a group to the control group, a significant increase in dermal CD8+ T lymphocytes (P < 0.01) and lower CD4-CD8 ratios (P < 0.01) were observed in the HIV+ individuals. Epidermal ICAM-1 and HLA-DR expression was negative in both HIV+ and normal skin biopsies. No evidence of a depletion of the SIS population or of epidermal immunoactivation in normal skin from HIV+ individuals was demonstrable, suggesting that alterations in the central immune system are not necessarily reflected in the SIS of HIV-infected patients.
Resumo:
Although red wine (RW) reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM), and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 ± 8.1 years) without other risk factors. Twenty-four normal subjects were used as controls for vascular reactivity. Subjects randomly received RW, 250 ml/day, or purple grape juice (GJ), 500 ml/day, for 14 days with an equal wash-out period. At baseline, all 16 subjects were hypercholesterolemic (mean LDL = 181.0 ± 28.7 mg/dl) but HDL, triglycerides, glucose, adhesion molecules, and platelet function were within normal limits. Brachial artery flow-mediated dilation was significantly decreased compared to controls (9.0 ± 7.1 vs 12.1 ± 4.5%; P < 0.05) and increased with both GJ (10.1 ± 7.1 before vs 16.9 ± 6.7% after: P < 0.05) and RW (10.1 ± 6.4 before vs 15.6 ± 4.6% after; P < 0.05). RW, but not GJ, also significantly increased endothelium-independent vasodilation (17.0 ± 8.6 before vs 23.0 ± 12.0% after; P < 0.01). GJ reduced ICAM-1 but not VCAM and RW had no effect on either molecule. No significant alterations were observed in plasma lipids, glucose or platelet aggregability with RW or GJ. Both RW and GJ similarly improved flow-mediated dilation, but RW also enhanced endothelium-independent vasodilation in hypercholesterolemic patients despite the increased plasma cholesterol. Thus, we conclude that GJ may protect against coronary artery disease without the additional negative effects of alcohol despite the gender.
Resumo:
Integrins are heterodimeric receptors composed of α and β transmembrane subunits that mediate attachment of cells to the extracellular matrix and counter-ligands such as ICAM-1 on adjacent cells. β2 integrin (CD18) associates with four different α (CD11) subunits to form an integrin subfamily, which has been reported to be expressed exclusively on leukocytes. However, recent studies indicate that β2 integrin is also expressed by other types of cells. Since the gene for β2 integrin is located in the region of human chromosome 21 associated with congenital heart defects, we postulated that it may be expressed in the developing heart. Here, we show the results from several different techniques used to test this hypothesis. PCR analyses indicated that β2 integrin and the αL, αM, and αX subunits are expressed during heart development. Immunohistochemical studies in both embryonic mouse and chicken hearts, using antibodies directed against the N- or C-terminal of β2 integrin or against its α subunit partners, showed that β2 integrin, as well as the αL, αM, and αX subunits, are expressed by the endothelial and mesenchymal cells of the atrioventricular canal and in the epicardium and myocardium during cardiogenesis. In situ hybridization studies further confirmed the presence of β2 integrin in these various locations in the embryonic heart. These results indicate that the β2 integrin subfamily may have other activities in addition to leukocyte adhesion, such as modulating the migration and differentiation of cells during the morphogenesis of the cardiac valves and myocardial walls of the heart.
Resumo:
The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na+-K+-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na+-K+-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na+-K+-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.
Resumo:
The levels of serum inflammatory cytokines and the activation of nuclear factor kappa B (NF-κB) and hypoxia inducible factor-1α (HIF-1α) in heart tissues in response to different frequencies of intermittent hypoxia (IH) and the antioxidant tempol were evaluated. Wistar rats (64 males, 200-220 g) were randomly divided into 6 experimental groups and 2 control groups. Four groups were exposed to IH 10, 20, 30, or 40 times/h. The other 2 experimental groups were challenged with IH (30 times/h) plus tempol, either beginning on day 0 (IH30T0) or on day 29 (IH30T29). After 6 weeks of challenge, serum levels of tumor necrosis factor (TNF)-α, intracellular adhesion molecule (ICAM)-1, and interleukin-10 were measured, and western blot analysis was used to detect NF-κB p65 and HIF-1α in myocardial tissues. Serum levels of TNF-α and ICAM-1 and myocardial expression of NF-κB p65 and HIF-1α were all significantly higher in IH rats than in controls (P<0.001). Increased IH frequency resulted in more significant changes. Administration of tempol in IH rats significantly reduced levels of TNF-α, ICAM-1, NF-κB and HIF-1α compared with the non-tempol-treated group (F=16.936, P<0.001). IH induced an inflammatory response in a frequency-dependent manner. Additionally, HIF-1α and NF-κB were increased following IH administration. Importantly, tempol treatment attenuated this effect.
Resumo:
The water soluble material, 3-n-propyl-1-azonia-4-azabicyclo[2.2.2]octanechloride silsesquioxane (dabcosil silsesquioxane) was obtained. The dabcosil silsesquioxane was grafted onto a silica surface, previously modified with aluminum oxide. The resulting solid, dabcosil-Al/SiO2, presents 0.15 mmol of dabco groups per gram of material. The product of the grafting reaction was analyzed by infrared spectroscopy and N2 adsorption-desorption isotherms. The dabcosil-Al/SiO2 material was used as sorbent for chromium (VI) adsorption in aqueous solution.
Resumo:
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human brain using successive steps of chromatography on DEAE-Trisacryl, hydroxylapatite and Sephacryl S-200. The purified enzyme cleaved the Gly33-Leu34 bond of the 25-35 neurotoxic sequence of the Alzheimer ß-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects. This enzyme activity was only inhibited by divalent cation chelators such as EDTA, EGTA and o-phenanthroline (1 mM) and was insensitive to phosphoramidon and captopril (1 µM concentration), specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. The high affinity of this human brain endopeptidase for ß-amyloid 1-40 peptide (Km = 5 µM) suggests that it may play a physiological role in the degradation of this substance produced by normal cellular metabolism. It may also be hypothesized that the abnormal accumulation of the amyloid ß-protein in Alzheimer's disease may be initiated by a defect or an inactivation of this enzyme.
Resumo:
Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1) plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.
Resumo:
In the present study, we have analyzed by sodium docecyl sulphate - polyacrilamide gel electrophoresis (SDS-PAGE), immunoblotting and Concanavalin A blotting (Con A blotting) proteins of membrane fractions and soluble fractions obtained from Giardia duodenalis trophozoites of two axenic strains isolated in Brazil from a symptomatic (BTU-11) and an asymptomatic patient (BTU-10), as compared to the reference strain Portland 1. Both Brazilian strains showed a complex and homogeneous electrophoretic pattern of proteins, but some differences could be observed. Several glycoproteins were detected, particularly the proteins of 81, 72, 59 kDa and the protein of 62 kDa in the membrane proteins and cytosol, respectively. Many antigenic components were revealed by anti-Giardia rabbit IgG antibodies in the immunoblotting analysis. Among these components, the membrane protein of 32 kDa and the cytosol protein of 30 kDa could be related to giardin, as previously demonstrated.
Resumo:
It was found that fish livers from the Amazon have considerable amounts of vitamins A, D and E compared with the values of the standartized cod-liver oil. Tambaqui liver oil has high concentration of vitamin A1(retinol) and vitamin A2 (degidroretinol) whereas the liver oils of pirarucu and cuiu-cuiu have preferently the vitamin A2. The contents of the vitamins D and E observed in the liver oils of tambaqui and cuiu-cuiu was extremely high.
Resumo:
This study describes the aerobic and anaerobic decay of soluble carbohydrates (CH) and polyphenols (PH) during decomposition of Montrichardia arborescens. Plant and water samples were collected in the Cantá stream (2º 49' 11" N and 60º 40' 24" W), Roraima, Brazil. Decomposition chambers with plant fragments and stream water were incubated. Particulate organic matter was separated from dissolved organic matter and concentrations of CH and PH were determined. The results were fitted to 1st order kinetics models. CH and PH comprised a labile fraction (LCH and LPH) and a refractory fraction (RCH and RPH). The global coefficient associated with LCH weight loss was 1.4 times higher under aerobic conditions (3.4 day-1) higher than for anaerobic conditions. On the other hand, the RCH decay rate in the anaerobic process (0.0074 day-1) was 1.39 times higher. LCH was estimated to be 92% while RCH amounted to 8%. The LPH anaerobic decay was 5.2 times the value for the aerobic decay (0.67 day-1). For both conditions, RPH decay coefficients were similar (» 0.011 day-1). In the aerobic experiments LPH and RPH corresponded to 92.5% and 7.5%, respectively. For the anaerobic process these contents were 85.5% and 14.5%, respectively. From these results, we concluded that in the Cantá stream, the anaerobic degradation of phenols is more efficient than the aerobic counterpart. The aerobic condition provides a faster decay of carbohydrates of this plant.
Resumo:
Abstract ST2 is a member of the interleukin-1 receptor family biomarker and circulating soluble ST2 concentrations are believed to reflect cardiovascular stress and fibrosis. Recent studies have demonstrated soluble ST2 to be a strong predictor of cardiovascular outcomes in both chronic and acute heart failure. It is a new biomarker that meets all required criteria for a useful biomarker. Of note, it adds information to natriuretic peptides (NPs) and some studies have shown it is even superior in terms of risk stratification. Since the introduction of NPs, this has been the most promising biomarker in the field of heart failure and might be particularly useful as therapy guide.
Resumo:
Nitric oxide (NO) is an important effector molecule involved in immune regulation and defense. NO produced by cytokine-activated macrophages was reported to be cytotoxic against the helminth Schistosoma mansoni. Identification and characterization of S. mansoni antigens that can provide protective immunity is crucial for understanding the complex immunoregulatory events that modulate the immune response in schistosomiasis. It is, then, essential to have available defined, purified parasite antigens. Previous work by our laboratory identified a fraction of S. mansoni soluble adult worm antigenic preparation (SWAP), named PIII, able to elicit significant in vitro cell proliferation and at the same time lower in vitro and in vivo granuloma formation when compared either to SEA (soluble egg antigen) or to SWAP. In the present work we report the effect of different in vivo trials with mice on their spleen cells ability to produce NO. We demonstrate that PIII-immunization is able to significantly increase NO production by spleen cells after in vitro stimulation with LPS. These data suggest a possible role for NO on the protective immunity induced by PIII.
Protective immunity induced in mice by F8.1 and F8.2 antigens purified from Schistosoma mansoni eggs
Resumo:
Schistosoma mansoni soluble egg antigens (SEA) were fractionated by isoelectric focusing, resulting in 20 components, characterized by pH, absorbance and protein concentration. The higher absorbance fractions were submitted to electrophoresis, and fraction 8 (F8) presented a specific pattern of bands on its isoelectric point. Protein 3 was observed only on F8, and so, it was utilized to rabbit immunization, in order to evaluate its capacity of inducing protective immunity. IgG antibodies from rabbit anti-F8 serum were coupled to Sepharose, and used to obtain the specific antigen by affinity chromatography. This antigen, submitted to electrophoresis, presented two proteic bands (F8.1 and F8.2), which were transferred to nitrocellulose membrane (PVDF) and sequenciated. The homology of F8.2 to known proteins was determined using the Basic Local Alignment Search Tool program (BLASTp). Significant homologies were obtained for the rabbit cytosolic Ca2+ uptake inhibitor, and for the bird a1-proteinase inhibitor. Immunization of mice with F8.1 and F8.2, in the presence of Corynebacterium parvum and Al(OH)3 as adjuvant, induced a significant protection degree against challenge infection, as observed by the decrease on worm burden recovered from portal system.
Resumo:
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.