293 resultados para soil-plant system


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soils of the coastal plains of Rio Grande do Sul, Brazil, are affected by salinization, which can hamper the establishment and development of crops in general, including rice. The application of high doses of KCl may aggravate the crop damage, due to the high saline content of this fertilizer. This study aimed to evaluate the effect of K fertilizer management on some properties of rice plant, grown in soils with different sodicity levels, and determine which attribute is best related to yield. The field study was conducted in four Albaqualfs with exchangeable Na percentages of 5.6, 9.0, 21 and 32 %. The management of KCl fertilizer consisted of the application of 90 kg ha-1 K2O broadcast, 90 kg ha-1 K2O in the row and 45 kg ha-1 K2O in the row + 45 kg ha-1 K2O at panicle initiation (PI). Plant density, dry matter evolution, height, SPAD (Soil Plant Analysis Development value indicating relative chlorophyll contents) index, tiller mass, 1,000-grain weight, panicle length and grain yield were evaluated. The plant density was damaged by application of K fertilizer in the row, especially at full dose (90 kg ha-1), at three sodicity levels, resulting in loss in biomass accumulation in later stages, affecting the crop yield, even at the lowest level of soil sodicity (5.6 %). All properties were correlated with yield; the highest positive correlation was found with plant density and shoot dry matter at full flowering, and a negative correlation with panicle length.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In view of the importance of the macroporosity for the water transport properties of soils, its quantitative assessment is a challenging task. Measurements of hydraulic conductivity (K) at different soil water tensions and the quantification of water-conducting macropores (θM) of a soil under different tillage systems could help understand the effects on the soil porous system and related hydraulic properties. The purpose of this study was to assess the effects of Conventional Tillage (CT), Chisel Plow (CP) and No Tillage (NT) on θM and on K; and to quantify the contribution of macroporosity to total water flux in a loam soil. A tension disc infiltrometer was used at two soil water pressure heads (-5 cm, and 0) to infer θM and K, during fallow. Macroporosity was determined based on the flow contribution between 0 and -5 cm water potentials (K0, K5, respectively), according to the Hagen-Poiseuille equation. The K0 values were statistically higher for CT than for NT and CP. The K5 values did not differ statistically among treatments. The mean K values varied between 0.20 and 3.70 cm/h. For CT, θM was significantly greater than for CP and NT, following the same trend as K0. No differences in θM were detected between CP and NT. With CT, the formation of water-conducting macropores with persistence until post-harvest was possible, while under CP preparation, the water-conducting macropores were not persistent. These results support the idea that tillage affects the soil water movement mainly by the resulting water-conducting macropores. Future studies on tillage effects on water movement should focus on macroporosity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The concept of soil quality is currently the subject of great discussion due to the interaction of soil with the environment (soil-plant-atmosphere) and practices of human intervention. However, concepts of soil quality relate quality to agricultural productivity, but assessment of soil quality in an agronomic context may be different from its assessment in natural areas. The aim of this study was to assess physical quality indices, the S index, soil aeration capacity (ACt/Pt), and water storage capacity (FC/Pt) of the soil from a permanent plot in the Caetetus Ecological Reserve (Galia, São Paulo, Brazil) under a seasonal semideciduous forest and compare them with the reference values for soil physical quality found in the literature. Water retention curves were used for that purpose. The S values found were higher than the proposed limit for soil physical quality (0.035). The A and E horizons showed the highest values because their sandy texture leads to a high slope of the water retention curve. The B horizons showed the lowest S values because their natural density leads to a lower slope of the water retention curve. The values found for ACt/Pt and FC/Pt were higher and lower than the idealized limits. The values obtained from these indices under natural vegetation can provide reference values for soils with similar properties that undergo changes due to anthropic activities. All the indices evaluated were effective in differentiating the effects of soil horizons in the natural hydro-physical functioning of the soils under study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hypothesis of this study was that the absence of soil tillage in long-term no-tillage (NT) systems can be detrimental to soil aeration. The objective was to assess the aeration condition of an Oxisol (Rhodic Ferrasol), very clayey texture (750 g kg-1 of clay; 200 g kg-1 of sand), after 30 years of cultivation under NT. The physical property soil air permeability (Ka) is sensitive to changes in the soil pore system. Aside from Ka, the air-filled porosity (ε a) and indices of pore continuity (K1 and N), derived from the relationship between Ka and εa, were used as indices of soil aeration. From the soil layers 0.0-0.1 and 0.1-0.2 m, 240 undisturbed samples were collected along a transect perpendicular to the crop rows, at three sampling positions: corn plant row (CR); center of the interrow (INT); and the equidistant point between CR and INT (PE). The properties Ka and εa were determined at soil matric potentials (Ψm) of -2, -4, -6, -10, -30, and -50 kPa. Soil bulk density (BD) was also determined. The results confirmed the hypothesis. In the 0.0-0.1 m layer, Ka, K1, N and Ψa were significantly greater and BD significantly lower in CR than at the other sampling positions. At a Ψm of -10 kPa, the Ka of CR was 6.9 and 8.4 times higher than in PE and INT, respectively, in the 0.0-0.1 m layer. The properties Ka, K1 and N were sensitive enough to detect changes in the pore system and their differences between the sampling positions demonstrated the importance of the spatial location for soil sampling. Tilling the crop rows provides better soil aeration under NT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water infiltration in the soil is an important hydrological process that occurs at the interface of the soil-atmosphere system; thus, the soil management practice used has a strong influence on this process. The aim of this study was to evaluate water infiltration in the soil and compare equations for estimating the water infiltration rate in an Ultisol after harvesting common bean (Phaseolus vulgaris L.) under simulated rainfall. Field tests with a rainfall simulator were carried out in three soil management systems: minimum tillage (MT), conventional tillage (CT), and no tillage (NT). In NT, four levels of plant residue on the soil surface were evaluated: 0, 3, 6, and 9 t ha-1. The models of Kostiakov-Lewis, Horton, and Philip were used to estimate the infiltration rate. In the MT system, the final infiltration rate was 54 mm h-1, whereas in the CT and NT systems with up to 3 t ha-1 of plant residue on the soil surface, the rate was near 17 mm h-1. In addition, the results indicated that in the NT system the infiltration rate increased with plant residue coverage greater than 6 t ha-1, i.e., there was a positive correlation between plant cover and the water infiltration rate. The Horton model was the most suitable in representing the water infiltration process in the soil. Therefore, this model can be recommended for estimation of this variable regardless of the soil tillage system used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil compaction has been recognized as a severe problem in mechanized agriculture and has an influence on many soil properties and processes. Yet, there are few studies on the long-term effects of soil compaction, and the development of soil compaction has been shown through a limited number of soil parameters. The objectives of this study were to evaluate the persistence of soil compaction effects (three traffic treatments: T0, without traffic; T3, three tractor passes; and T5, five tractor passes) on pore system configuration, through static and dynamic determinations; and to determine changes in soil pore orientation due to soil compaction through measurement of hydraulic conductivity of saturated soil in samples taken vertically and horizontally. Traffic led to persistent changes in all the dynamic indicators studied (saturated hydraulic conductivity, K0; effective macro- and mesoporosity, εma and εme), with significantly lower values of K0, εma, and εme in the T5 treatment. The static indicators of bulk density (BD), derived total porosity (TP), and total macroporosity (θma) did not vary significantly among the treatments. This means that machine traffic did not produce persistent changes on these variables after two years. However, the orientation of the soil pore system was modified by traffic. Even in T0, there were greater changes in K0 measured in the samples taken vertically than horizontally, which was more related to the presence of vertical biopores, and to isotropy of K0 in the treatments with machine traffic. Overall, the results showed that dynamic indicators are more sensitive to the effects of compaction and that, in the future, static indicators should not be used as compaction indicators without being complemented by dynamic indicators.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analysis of the soil pore system represents an important way of characterizing soil structure. Properties such as the shape and number of pores can be determined through soil pore evaluations. This study presents a three-dimensional (3D) characterization of the shape and number of pores of a sub-tropical soil. To do so, a second generation X-ray microtomograph equipped with a plain type detector was employed. A voltage of 120 kV and current of 80 mA was applied to the X-ray tube. The soil samples analyzed were collected at three different depths (0-10, 10-20, and 20-30 cm). The results obtained allowed qualitative (images) and quantitative (3D) analyses of the soil structure, revealing the potential of the microtomographic technique, as well as the study of differences in soil macroporosity at different depths. Macroporosity was 5.14 % in the 0-10 cm layer, 5.10 % in the 10-20 cm layer, and 6.64 % in the 20-30 cm layer. The macroporosity of unclassified pores (UN) was 0.30 % (0-10 and 10-20 cm) and 0.40 % (20-30 cm), while equant pores (EQ) had values of 0.01 % at the three depths under analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT Groundwater management depends on the knowledge on recharge rates and water fluxes within aquifers. The recharge is one of the water cycle components most difficult to estimate. As a result, despite the chosen method, the estimates are subject to uncertainties that can be identified by means of comparison with other approaches. In this study, groundwater recharge estimates based on the water balance in the unsaturated zone is assessed. Firstly, the approach is evaluated by comparing the results with those of another method. Then, the estimates are used as inputs in a transient groundwater flow model in order to assess how the water table would respond to the obtained recharges rates compared to measured levels. The results suggest a good performance of the adopted approach and, despite some inherent limitations, it has advantages over other methods since the data required are easier to obtain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT Changes in soil physical properties due to different management systems occur slowly, and long-term studies are needed to assess soil quality. The objectives of this study were to evaluate the effects of soil management systems and liming methods on the physical properties of a Latossolo Bruno Alumínico típico (Hapludox). A long-term experiment that began in 1978 with conventional and no-tillage systems was assessed. In addition, different liming methods (no lime, incorporated lime, and lime on the soil surface) have been applied since 1987 and were also evaluated in this study. Moreover, an area of native forest was evaluated and considered a reference for the natural condition of the soil. Soil physical properties were evaluated in layers to a depth of 1.00 m. Compared to native forest, the conventional tillage and no-tillage systems had higher soil bulk density, penetration resistance, and microporosity, and lower aggregate stability and macroporosity. Compared to the conventional tillage system, long-term no-tillage improved the structure of the Hapludox, as evidenced by increased microporosity and aggregate stability, especially in the soil surface layer. In no-tillage with lime applications sporadically incorporated, soil physical properties did not differ from no-tillage without lime and with lime applied on the soil surface, indicating that this practice maintains the physical quality of soil under no-tillage. Liming in a conventional tillage system improved soil aggregation and reduces penetration resistance in the soil layers near the soil surface. No-tillage was the main practice related to improvement of soil physical quality, and liming methods did not influence soil physical properties in this soil management system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to establish critical values of the N indices, namely soil-plant analysis development (SPAD), petiole sap N-NO3 and organic N in the tomato leaf adjacent to the first cluster (LAC), under soil and nutrient solution conditions, determined by different statistical approaches. Two experiments were conducted in randomized complete block design with four repli-cations. Tomato plants were grown in soil, in 3 L pot, with five N rates (0, 100, 200, 400 and 800 mg kg-1) and in solution at N rates of 0, 4, 8, 12 and 16 mmol L-1. Experiments in nutrient solution and soil were finished at thirty seven and forty two days after transplanting, respectively. At those times, SPAD index and petiole sap N-NO3 were evaluated in the LAC. Then, plants were harvested, separated in leaves and stem, dried at 70ºC, ground and weighted. The organic N was determined in LAC dry matter. Three statistical procedures were used to calculate critical N values. There were accentuated discrepancies for critical values of N indices obtained with plants grown in soil and nutrient solution as well as for different statistical procedures. Critical values of nitrogen indices at all situations are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work objectified to evaluate the efficiency of two meter mechanism of corn seeds when submitted to different forward speed and soil management system during the non-tillage seeding. It was used a factorial design in randomized blocks. The factors whose effects were examined were related to the seeders with pneumatic and horizontal disk meter mechanisms for the distribution of the seeds, to the set tractor-seeder forward speeds (4.4; 8.0 and 9.8 km h-1), and to the soil management system considering the corn no-tillage seeding over minimum tillage with chisel plow and the no-tillage system for the seeding of oat culture (Avena strigosa Schreb). It was verified that the forward speed didn't influence the initial and final stands of plants but it interfered in the regularity of longitudinal distribution of plants. The smallest speed provided the largest percentile of normal spacing between plants. The pneumatic meter mechanism presented better performance than the horizontal disk perforated in the longitudinal distribution of plants. About corn productivity aspect it's indifferent the recommendation of use for pneumatic and perforated horizontal disk meter mechanism of seeds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study aimed to evaluate a methodology to quantify the porosity of the soil using computed tomography in areas under no-tillage, conventional tillage and native forest. Three soil management systems were selected for the study: forest, conventional tillage and no-tillage. In each soil management system, undisturbed soil samples were collected in the surface layer (0.0 to 0.10 m). The tomographic images were obtained using a X-ray microtomography. After obtaining the images, they were processed, and a methodology was evaluated for image conversion into numerical values. The statistical method which provided the greatest accuracy was the percentile method. The methodology used to analyze the tomographic image allowed quantifying the porosity of the soil under different soil management. The method enabled the characterization of soil porosity in a non-evasive and non-destructive way.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O clorofilômetro pode auxiliar no manejo da adubação nitrogenada em cobertura, não havendo, porém, um valor crítico de leitura que se correlacione com a produtividade de grãos. O objetivo deste trabalho foi monitorar o teor de nitrogênio (N), nas plantas de arroz irrigado dos cultivares IRGA 422CL e IRGA 424, com o uso do clorofilômetro, e associar as leituras com a produção de matérias verde e seca das plantas e com a produtividade de grãos. Foram desenvolvidos dois experimentos, nas safras 2007/08 e 2008/09, com doses N para a 1ª e 2ª adubação de cobertura, sendo, posteriormente, realizadas as leituras SPAD (Soil Plant Analysis Development) e determinados a produção de matérias verde e seca, os teores de N no tecido das plantas e de N acumulado e a produtividade de grãos. Houve efeito da 1ª e 2ª aplicação de N nas leituras do clorofilômetro ao longo do ciclo, porém, as leituras SPAD tornaram-se semelhantes para todos os tratamentos com o passar do tempo. A produção de matérias verde e seca e de N acumulado responderam linearmente às doses de N. Não houve efeito de interação para as doses de N e produtividade de grãos, porém, a resposta de produtividade de grãos, em função das doses de N, obedeceu a uma relação quadrática, em ambos os experimentos. A leitura SPAD avalia o estado nutricional das plantas de arroz irrigado, mas não produz uma informação precisa sobre a necessidade de aplicação de N com reflexos na produtividade. Portanto, associá-la a outros parâmetros, como à produção de matérias verde e seca da planta pode auxiliar na interpretação e no ajuste da dose de N a ser aplicada em cobertura