201 resultados para soil moisture content
Resumo:
The aim of this study was to characterize the spatial variability of soil bulk density (Bd), soil moisture content (θ) and total porosity (Tp) in two management systems of sugarcane harvesting, with or without burning, in a Haplustox soil, in the 0-0.20 m layer. The study area is located in Rio Brilhante, state of Mato Grosso do Sul, Brazil, in Eldorado Sugar Mill. The plots have presented 180 m length, and 145.6 m width, totaling 90 points distributed in the form of a grid of nine rows by ten columns, with points spaced 20 m from its neighbor. Soil samples were collected at 0-0.20 m layer in 2007/2008 and 2008/2009 crops. The harvest with burning system had a higher density compared to mechanized harvest, in the two study periods. The moisture content as well as the porosity increased proportionally with the decrease of the density of the harvest burning system compared to the mechanized.
Resumo:
Soil compaction caused by machinery traffic reduces crop yields. This study aimed to evaluate the effects of intensive traffic, and the soil water content, on the soil penetration resistance (PR) of a Rhodic Eutrudox (Distroferric Red Latosol, Brazilian Classification), managed under no-tillage (NT). The experiment consisted of six treatments: NT with recent chiseling, NT without additional compaction, and NT with additional compaction by 4, 8, 10 and 20 passes of a harvester with a weight of 100 kN (70 kN on the front axle). Undisturbed soil samples were collected at 5.5-10.5 cm and 13.5-18.5 cm depth to quantify the soil bulk density (BD). The PR was assessed in four periods, using an impact penetrometer, inserted in the soil to a depth of 46 cm. The effect of traffic intensities on the PR was small when this variable was assessed with the soil in the plastic consistency. Differences in PR among treatments increased as the soil water content decreased. The increase in the values of PR and BD was higher in the first passes, but the increase in the number of traffics resulted in deeper soil compaction. The machinery traffic effects on PR are better characterized in the friable soil consistency.
Resumo:
The Jackfruit tree is one of the most significant trees in tropical home gardens and perhaps the most widespread and useful tree in the important genus Artocarpus. The fruit is susceptible to mechanical and biological damage in the mature state, and some people find the aroma of the fruit objectionable, particularly in confined spaces. The dehydration process could be an alternative for the exploitation of this product, and the relationship between moisture content and water activity provides useful information for its processing and storage. The aim of this study was to determine the thermodynamic properties of the water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Desorption isotherms of the different parts of the jackfruit (pulp, peduncle, mesocarp, peel, and seed) were determined at four different temperatures (313.15, 323.15, 333.15, and 343.15 K) in a water activity range of 0.02-0.753 using the static gravimetric method. Theoretical and empirical models were used to model the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to calculate the isosteric heat of sorption, the differential entropy, and Gibbs' free energy using the Guggenhein-Anderson-de Boer and Oswin models considering the effect of temperature on the hygroscopic equilibrium.
Resumo:
This research aimed to determine the soil seed bank and its relationship with environmental factors that have an influence in the distribution of the vegetation above the ground in an excluded area of natural grassland in the South of Brazil. Most of the 122 identified species in the seed bank were perennials. Data analysis indicated three distinct community groups, according to the size and composition of the soil seed bank in lowlands with permanent wet soils, in lowlands and in other areas. In general, lowlands were characterized by low-fertility soils, high moisture and aluminum contents, being spatially homogeneous habitats and, therefore, more restricted to vegetation heterogeneity than other parts of the relief. Environmental factors most associated with soil seed bank size and composition were relief position and their co-related soil variables such as: soil moisture content, potassium content, organic matter, basic saturation of cation exchange soil capacity, exchangeable basics sum of the soil and clay soil content. According to that, relief position, associated with combined effects of soil chemical properties related to it, determines the observed variation pattern of the soil seed bank, as a reflection of the vegetation above the area.
Resumo:
Brachiaria species normally show a double seed dormancy mechanism, mainly on fresh-harvested seeds, leading to germination percentages lower than those of viability detected by tetrazolium test (TZ) and causing problems as to storage, trading and seed inspection activities. The adoption of the methodology to detect the constants of the viability equation (high storage temperatures and fixed moisture contents) made feasible in this research to isolate the effects of 40, 50 and 65°C on B. brizantha cultivars Marandu, Mulato 1 and Mulato 2 seed dormancy releasing, after storage with moisture contents ranging from 1.9 and 17.8%. Seed samples presented high dormancy levels, detected by TZ and it was complete and partially released by chemical scarification and accelerated ageing test, respectively. No statistical differences were observed as to the speed of germination (T50); however, differences among cultivars were detected as to number of seed per gram. Sorption and desorption isotherm curves were similar for the cultivars. Seed dormancy releasing was better achieved at 40 and 50°C with mc ranging from 7.6 to 10.8%. The temperature of 50°C appears to be adequate for seed dormancy releasing in all mc analyzed. No significant seed dormancy releasing result was observed at 65°C. The cultivar Marandu presented the highest storability throughout the experiment.
Resumo:
The supersweet (Sh2) corn seeds have a thin tegument and an irregular shape, which hinder the sowing procedure. As a function of those factors, the significance of using the pelleting process to improve sowing and standardize the stand of plants in the field without the need of thinning within the row is emphasized. Although this technique has already been known for many years, little has been studied on the effect of such procedure on the plantability and on the moisture content of the supersweet corn seeds. Therefore, this research work aimed at evaluating the effects of pelleting on the moisture content of the seeds along the storing process, on the occurrence of gaps on seed deposition and on the dropping of double seeds, with the aid of a testing seeder. Other physical attributes of seeds and pellets were also evaluated through tests of fragmentation, screen retention, mass of a thousand seeds and apparent volume. Results have shown an increase on the mass and on the volume of the pelleted seeds that presented highly resistance to cracks and breaking. The pelleting was efficient on the reduction of gaps and on the deposition of double seeds at sowing, thus providing highly satisfactory results for these attributes. An increase on the seed moisture content was also observed as a function of storage with a significant reduction on this factor after the pelleting procedure. Results allow concluding that the pelleting process reduces seed moisture content and improves plantability, positively affecting the efficiency of the sowing process.
Resumo:
The semi-arid region of Chiapas is dominated by N2 -fixing shrubs, e.g., Acacia angustissima. Urea-fertilized soil samples under maize were collected from areas covered and uncovered by A. angustissima in different seasons and N2O and CO2 emissions were monitored. The objective of this study was to determine the effects of urea and of the rainy and dry season on gas emissions from semi-arid soil under laboratory conditions. Urea and soil use had no effect on CO2 production. Nitrons oxide emission from soil was three times higher in the dry than in the rainy season, while urea fertilization doubled emissions. Emissions were twice as high from soil sampled under A. angustissima canopy than from arable land, but 1.2 lower than from soil sampled outside the canopy, and five times higher from soil incubated at 40 % of the water-holding capacity (WHC) than at soil moisture content, but 15 times lower than from soil incubated at 100 WHC. It was found that the soil sampling time and water content had a significant effect on N2O emissions, while N fertilizer and sampling location were less influent.
Resumo:
Taking into account the nature of the hydrological processes involved in in situ measurement of Field Capacity (FC), this study proposes a variation of the definition of FC aiming not only at minimizing the inadequacies of its determination, but also at maintaining its original, practical meaning. Analysis of FC data for 22 Brazilian soils and additional FC data from the literature, all measured according to the proposed definition, which is based on a 48-h drainage time after infiltration by shallow ponding, indicates a weak dependency on the amount of infiltrated water, antecedent moisture level, soil morphology, and the level of the groundwater table, but a strong dependency on basic soil properties. The dependence on basic soil properties allowed determination of FC of the 22 soil profiles by pedotransfer functions (PTFs) using the input variables usually adopted in prediction of soil water retention. Among the input variables, soil moisture content θ (6 kPa) had the greatest impact. Indeed, a linear PTF based only on it resulted in an FC with a root mean squared residue less than 0.04 m³ m-3 for most soils individually. Such a PTF proved to be a better FC predictor than the traditional method of using moisture content at an arbitrary suction. Our FC data were compatible with an equivalent and broader USA database found in the literature, mainly for medium-texture soil samples. One reason for differences between FCs of the two data sets of fine-textured soils is due to their different drainage times. Thus, a standardized procedure for in situ determination of FC is recommended.
Resumo:
ABSTRACT Soybean cultivation is increasing rapidly in the region of Alto Vale do Itajaí, State of Santa Catarina, where there is a predominance of silt soils. The objective of this work was to evaluate the content of primary macronutrients in shoots and shoot and root vegetative growth of soybean (Glicine max L. Merrill) grown in a silt-loam soil under different compactation densities and moisture levels. A randomized block design in a 4x4 factorial arrangement was used, with four compactation densities: 1.00; 1.20; 1.40 and 1.60 Mg m-3, and four soil moisture levels: 0.130; 0.160; 0.190 and 0.220 kg kg-1 and four replications. Each pot consisted of the overlapping of three 150-mm PVC rings, where soil was maintained in the higher and lower part of the pot with a density of 1.00 Mg m-3 and in the intermediate ring, the compactation densities were increased. Values of soil density higher than 120 Mg m-3 negatively affected N, P and K uptake by soybean plants, as well as the plant mass of the shoots and roots. The higher levels of soil moisture reduced the compaction effect and promoted better absorption of P and K.
Resumo:
The soil penetration resistance has been used to represent the compaction situation and several authors have attempted to relate the cone index (CI) with the bulk density. The importance of using the CI as source of information for decisions in agricultural activities, livestock and forestry manner, has become increasingly larger, which requires more knowledge about the penetrometers and penetrographs behavior. This study aimed to verify, in controlled laboratory conditions, the influence of soil water content and cone penetration rate to obtain the cone index, when density variation occurs. The soil was compacted by compression through a universal press cylinder which was specially designed to produce the test specimens. Bulk densities were determined from samples taken from the test specimens and their moisture content. The CI values obtained were between 0.258 and 4.776 MPa, measured in 4 moistures and 7 soil densities with 3 penetration speeds. It was concluded that the determination of IC is strongly influenced by the soil moisture but the penetration speed variation, used in this study, was not sufficient to influence the IC determination. However, the decrease in soil water content may increase the sensitiveness to detect a variation in bulk density by the use of cone index.
Resumo:
During timber exploitation in forest stands harvesting machines pass repeatedly along the same track and can cause soil compaction, which leads to soil erosion and restricted tree root growth. The level of soil compaction depends on the number of passes and weight of the wood load. This paper aimed to evaluate soil compaction and eucalyptus growth as affected by the number of passes and wood load of a forwarder. The study was carried out in Santa Maria de Itabira county, Minas Gerais State - Brazil, on a seven-year-old eucalyptus stand planted on an Oxisol. The trees were felled by chainsaw and manually removed. Plots of 144 m² (four rows 12 m long in a 3 x 2 m spacing) were then marked off for the conduction of two trials. The first tested the traffic intensity of a forwarder which weighed 11,900 kg and carried 12 m³ wood (density of 480 kg m-3) and passed 2, 4, and 8 times along the same track. In the second trial, the forwarder carried loads of 4, 8, and 12 m³ of wood, and the machine was driven four times along the same track. In each plot, the passes affected four rows. Eucalyptus was planted in 30 x 30 x 30 cm holes on the compacted tracks. The soil in the area is clayey (470 clay and 440 g kg-1 sand content) and at depths of 0-5 cm and 5-10 cm, respectively, soil organic carbon was 406 and 272 g kg-1 and the moisture content during the trial 248 and 249 g kg-1. These layers were assessed for soil bulk density and water-stable aggregates. The infiltration rate was measured by a cylinder infiltrometer. After 441 days the measurements were repeated, with additional analyses of: soil organic carbon, total nitrogen, N-NH4+, N-NO3-, porosity, and penetration resistance. Tree height, stem diameter, and stem dry matter were measured. Forwarder traffic increased soil compaction, resistance to penetration and microporosity while it reduced the geometric mean diameter, total porosity, macroporosity and infiltration rate. Stem dry matter yield and tree height were not affected by soil compaction. Two passes of the forwarder were enough to cause the disturbances at the highest levels. The compaction effects were still persistent 441 days after forwarder traffic.
Resumo:
Soil moisture is the property which most greatly influences the soil dielectric constant, which is also influenced by soil mineralogy. The aim of this study was to determine mathematical models for soil moisture and the dielectric constant (Ka) for a Hapludalf, two clayey Hapludox and a very clayey Hapludox and test the reliability of universal models, such as those proposed by Topp and Ledieu and their co-workers in the 80's, and specific models to estimate soil moisture with a TDR. Soil samples were collected from the 0 to 0.30 m layer, sieved through a mesh of 0.002 m diameter and packed in PVC cylinders with a 0.1 m diameter and 0.3 m height. Seven samples of each soil class were saturated by capillarity and a probe composed of two rods was inserted in each one of them. Moisture readings began with the saturated soil and concluded when the soil was near permanent wilting point. In each step, the samples were weighed on a precision scale to calculate volumetric moisture. Linear and polynomial models were adjusted for each soil class and for all soils together between soil moisture and the dielectric constant. Accuracy of the models was evaluated by the coefficient of determination, the standard error of estimate and the 1:1 line. The models proposed by Topp and Ledieu and their co-workers were not adequate for estimating the moisture in the soil classes studied. The adjusted linear and polynomial models for the entire set of data of the four soil classes did not have sufficient accuracy for estimating soil moisture. The greater the soil clay and Fe oxide content, the greater the dielectric constant of the medium for a given volumetric moisture. The specific models, θ = 0.40283 - 0.04231 Ka + 0.00194 Ka² - 0.000022 Ka³ (Hapludox) θ = 0.01971 + 0.02902 Ka - 0.00086 Ka² + 0.000012 Ka³ (Hapludox -PF), θ = 0.01692 - 0.00507 Ka (Hapludalf) and θ = 0.08471 + 0.01145 Ka (Hapludox-CA), show greater accuracy and reliability for estimating soil moisture in the soil classes studied.
Resumo:
A method for determining soil hydraulic properties of a weathered tropical soil (Oxisol) using a medium-sized column with undisturbed soil is presented. The method was used to determine fitting parameters of the water retention curve and hydraulic conductivity functions of a soil column in support of a pesticide leaching study. The soil column was extracted from a continuously-used research plot in Central Oahu (Hawaii, USA) and its internal structure was examined by computed tomography. The experiment was based on tension infiltration into the soil column with free outflow at the lower end. Water flow through the soil core was mathematically modeled using a computer code that numerically solves the one-dimensional Richards equation. Measured soil hydraulic parameters were used for direct simulation, and the retention and soil hydraulic parameters were estimated by inverse modeling. The inverse modeling produced very good agreement between model outputs and measured flux and pressure head data for the relatively homogeneous column. The moisture content at a given pressure from the retention curve measured directly in small soil samples was lower than that obtained through parameter optimization based on experiments using a medium-sized undisturbed soil column.
Resumo:
One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.
Resumo:
Soil penetration resistance is an important property that affects root growth and elongation and water movement in the soil. Since no-till systems tend to increase organic matter in the soil, the purpose of this study was to evaluate the efficiency with which soil penetration resistance is estimated using a proposed model based on moisture content, density and organic matter content in an Oxisol containing 665, 221 and 114 g kg-1 of clay, silt and sand respectively under annual no-till cropping, located in Londrina, Paraná State, Brazil. Penetration resistance was evaluated at random locations continually from May 2008 to February 2011, using an impact penetrometer to obtain a total of 960 replications. For the measurements, soil was sampled at depths of 0 to 20 cm to determine gravimetric moisture (G), bulk density (D) and organic matter content (M). The penetration resistance curve (PR) was adjusted using two non-linear models (PR = a Db Gc and PR' = a Db Gc Md), where a, b, c and d are coefficients of the adjusted model. It was found that the model that included M was the most efficient for estimating PR, explaining 91 % of PR variability, compared to 82 % of the other model.