104 resultados para sequence variations
Resumo:
Crustacean growth studies typically use modal analysis rather than focusing on the growth of individuals. In the present work, we use geometric morphometrics to determine how organism shape and size varies during the life of the freshwater crab, Aegla uruguayana Schmitt, 1942. A total of 66 individuals from diverse life cycle stages were examined daily and each exuvia was recorded. Digital images of the dorsal region of the cephalothorax were obtained for each exuvia and were subsequently used to record landmark configurations. Moult increment and intermoult period were estimated for each crab. Differences in shape between crabs of different sizes (allometry) and sexes (sexual dimorphism; SD) were observed. Allometry was registered among specimens; however, SD was not statistically significant between crabs of a given size. The intermoult period increased as size increased, but the moult frequency was similar between the sexes. Regarding ontogeny, juveniles had short and blunt rostrum, robust forehead region, and narrow cephalothorax. Unlike juveniles crabs, adults presented a well-defined anterior and posterior cephalothorax region. The rostrum was long and stylised and the forehead narrow. Geometric morphometric methods were highly effective for the analysis of aeglid-individual- growth and avoided excessive handling of individuals through exuvia analysis.
Resumo:
ABSTRACT Morphological variations, according to the principles of ecomorphology, can be related to different aspects of the organism way of life, such as occupation of habitats and feeding behavior. The present study sought to examine the intraspecific variation in two populations of Poecilia reticulata Peters, 1859, that occur in two types of environments, a lotic (Maringá Stream) and a lentic (Jaboti Lake). Due to a marked sexual dimorphism, males and females were analyzed separately. Thus, the proposed hypotheses were that the populations that occur in distinct environments present morphological differences. The morphological variables were obtained using morphometric measurements and the ecomorphological indexes. The data were summarized in a Principal Component Analysis (PCA). A Multivariate Analysis of Variance (Manova) was made to verify significant differences in morphology between the populations. Males and females showed similar ecomorphological patterns according to the environment they occur. In general the population from Maringá Stream had fins with major areas, and the Jaboti Lake population eyes located more dorsally. Additionally, others morphological differences such as wider mouth of the males from Maringá Stream, wider heads on Jaboti Lake females and more protractible mouths on males from Jaboti Lake suggest a set of environmental variables that can possibly influence the ecomorphological patterns of the populations, as the water current, availability of food resources and predation. In summary, the initial hypotheses could be confirmed, evidencing the occurrence of distinct ecomorphotypes in the same species according to the environment type.
Resumo:
We have isolated a clone of Trypanosoma cruzi genimic DNA, lambda 3b2-5, which contains sequences that are reiterated in the genome. Northtern blot analysis showed that clone 3b2-5 hybridizes to 1,200-5,000 bases different mRNA species. The number of mRNAs species hybridized to clone 3b2-5 exceeds its coding capacity showing that this clone carries sequences that are common to several mRNAs species and conserved in the poly A(+) RNA. These sequences are not homologous to the T. cruzi spliced leader sequence, since clone 3b2-5 hybridize to a synthetic 20 nucleotice complementary to the spliced leader sequence. Clone 3b2-5 does not hybridize to DNA and RNA from several genera of Trypanosomatidae and other Trypanosoma species indicating that it carries T. cruzi species-specific sequences.
Resumo:
Tandemly repeated DNA sequences are found in the genome of higher eukaryotes, and have also been demonstrated in Trypanosoma cruzi. Repeated DNA sequences are potentially useful for the diagnostic detection of T. cruzi (A. Gonzales et al., 1984, Proc. Natl. Acad. Sci. USA, 81: 3356-3360). We have isoleted two clones from a genomic library of T. cruzi (Y strain) that contain, in one clone a family of at least seven copies of a repetitive sequence of approximately 600 base pairs, and in the other an independent copy of the same sequence. One copy of the repetition (HSP) and the independent clone (HCR) were sequenced by the Sanger procedure (Fig.). This sequence hybridized to four strains of T. cruzi tested and did not hybridize to eleven species of trypanosotids from five different Genera, being a good candidate for diagnostic assays. GenBank accession numbers: HSP#m31919, HCR#31920.
Resumo:
The P126 protein, a parasitosphorus vacuole antigen of Plasmodium falciparum has beenshoen to induce protective immunity in Saimiri and Aotus monkeys. In the present work we investigated its immunogenicity. Our results suggest that the N-term of P126 is poorly immunogenic and antibody response against the P126 could be under a MHC restricted control in C57BL/6(H-2b) mice, which could be problematic in ternms of a use of the P126 in a vaccine program. However, we observed that a synthetic peptide, copying the 6 octapeptide repeat corresponding to the N-term of the P126, induces an antibody response to the native molecule in C57BL/6 non-responder mice. Moreover, the vaccine-P126 recombinant induced anmtibodies against the N-term of the molecule in rabbits while the unprocessed P126 did not.
Resumo:
During their complex life cycle schistosomes alternate between the use of stored glycogen and reliance on host glucose to provide for their energy needs. In addition, there is dramatic variation between the relative contribution of aerobic versus anaerobic glucose metabolism during development. We have cloned a set of representative cDNAs that encode proteins involved in glucose uptake, glycolysis, Kreb's cycle and oxidative phosphorylation. The different cDNAs were used as probes to examine the expression of glucose metabolism genes during the schistosome life cycle. Steady state mRNA levels from whole cercariae, isolated cercarial tails, schistosomula and adult worms were analysed on Northern blots and dot blots which were quantified using storage phosphor technology. These studies reveal: (1) Transcripts encoding glycogen metabolic enzymes are expressed to much higher levels in cercarial tails than whole cercariae or schistosomula while the opposite pattern is found for glucose transporters and hexokinase transcripts; (2) Schistosomula contain low levels of transcripts encoding respiratory enzymes but regain the capacity for aerobic glucose metabolism as they mature to adulthood; (3) Male and female adults contain similar levels of the different transcripts involved in glucose metabolism.
Update of the Gene Discovery Program in Schistosoma mansoni with the Expressed Sequence Tag Approach
Resumo:
Continuing the Schistosoma mansoni Genome Project 363 new templates were sequenced generating 205 more ESTs corresponding to 91 genes. Seventy four of these genes (81%) had not previously been described in S. mansoni. Among the newly discovered genes there are several of significant biological interest such as synaptophysin, NIFs-like and rho-GDP dissociation inhibitor
Resumo:
Triatoma infestans is the triatomine that presents the greatest dispersion area in South America. However, it is not known whether the original characteristics of this insect remained in its long dispersion process. The purpose of this work was to study comparatively the external male genitalia of insects from different populations of T. infestans, two from Brazil (Minas Gerais and Bahia) and one from Bolivia (Cochabamba Valley), and to investigate the correlation between the morphological and behavioral variations. Differences were observed in one of the structures of the external genitalia (endosoma process) that could be used to characterize the insects from the three populations studied.
Resumo:
A stable microbial system in the respiratory tract acts as an important defense mechanism against pathogenic microorganisms. Perturbations in this system may allow pathogens to establish. In an ecological environment such as the respiratory tract, there are many diverse factors that play a role in the establishment of the indigenous flora. In the present work we studied the normal microbial flora of different areas of the respiratory tract of mice and their evolution from the time the mice were born. Our interest was to know which were the dominant groups of microorganisms in each area, which were the first capable of colonizing and which dominated over time to be used as probiotic microorganisms. Our results show that Gram negative facultatively anaerobic bacilli and strict anaerobic microorganisms were the last ones to appear in the bronchia, while aerobic and Gram positive cocci were present in all the areas of the respiratory tract. The number of facultative aerobes and strict anaerobes were similar in the nasal passage, pharynx instilled and trachea, but lower in bronchia. The dominant species were Streptococcus viridans and Staphylococcus saprophyticcus, followed by S. epidermidis, Lactobacilli and S. cohnii I which were present on every studied days but at different proportions. This paper is the first part of a research topic investigating the protective effect of the indigenous flora against pathogens using the mice as an experimental model.
Resumo:
Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines.
Resumo:
Twenty-one Mycobacterium avium multisolates, from ten human immunodeficiency virus-infected patients, were typed by restriction fragment length polymorphism using as marker the IS1245 and characterized by minimum inhibitory concentration for nine different antibiotics. Two out of four patients harboring multisolates with different fingerprint profile, were therefore considered as having a polyclonal infection, since their isolates were taken from sterile site. This result confirms that polyclonal infection caused by M. avium occurs with a nonnegligenciable frequency. Analyzing the multisolates susceptibility profile of each patient it was observed that most of them were infected with strains having appreciably different antimicrobial susceptibility patterns, no matter what the genotypic pattern of the strains was. These results have strong implication for the treatment of the patients.
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Resumo:
Biomphalaria glabrata, B. tenagophila and B. straminea are intermediate hosts of Schistosoma mansoni, in Brazil. The latter is of epidemiological importance in the northwest of Brazil and, due to morphological similarities, has been grouped with B. intermedia and B. kuhniana in a complex named B. straminea. In the current work, we have standardized the simple sequence repeat anchored polymerase chain reaction (SSR-PCR) technique, using the primers (CA)8RY and K7, to study the genetic variability of these species. The similarity level was calculated using the Dice coefficient and genetic distance using the Nei and Li coefficient. The trees were obtained by the UPGMA and neighbor-joining methods. We have observed that the most related individuals belong to the same species and locality and that individuals from different localities, but of the same species, present clear heterogeneity. The trees generated using both methods showed similar topologies. The SSR-PCR technique was shown to be very efficient in intrapopulational and intraspecific studies of the B. straminea complex snails.