38 resultados para salt appetite
Resumo:
The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls) and evaluated under saline (15 dS m-1) and nonsaline (2.84 dS m-1) conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.
Resumo:
This study evaluated the tolerance of mango cultivars 'Haden', 'Palmer', 'Tommy Atkins' and 'Uba' grafted on rootstock 'Imbú' to salt stress using chlorophyll fluorescence. Plants were grown in modified Hoagland solution containing 0, 15, 30, and 45 mmol L-1 NaCl. At 97 days the parameters of the chlorophyll fluorescence (F0, Fm, Fv, F0/Fm, Fv/Fm, Fv'/Fm', ΦPSII = [(Fm'-Fs)/(Fm')], D = (1- Fv'/Fm') and ETR = (ΦPSII×PPF×0,84×0,5) were determined. At 100 days, the leaf emission and leaf area, toxicity and leaf abscission indexes were determined. In all cultivars evaluated, in different degree, there were decreases in photochemical efficiency of photosystem II, enhanced concentrations from 15 mmol L-1 NaCl. The decreases in the potential quantum yield of photosystem II (Fv/Fm) were 27.9, 18.7, 20.5, and 27.4%, for cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba', respectively, when grown in 45 mmol L-1 NaCl. It was found decreases in leaf emission and mean leaf area in all cultivars from 15 mmol L-1 NaCl. There were increases in leaf toxicity of 33.0, 67.5, 41.6 and 80.8% and in leaf abscission of 71.8, 29.2, 32.5, and 67.9% for the cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba' respectively, when grown in 45 mmol L-1 NaCl. Leaf toxicity and leaf abscission were not observed in 15 mmol L-1 NaCl. The decrease in Fv/Fm ratio were accompanied by decreasing in leaf emission and increased leaf toxicity index, showing, therefore, the potential of chlorophyll fluorescence in the early detection of salt stress in mango tree.
Resumo:
The present work analyzed the effect of the temperature and type of salt on the phase equilibrium of aqueous two-phase systems (ATPS) formed by poly (ethylene glycol) (PEG) 1500 + potassium phosphate, from (278.15 to 318.15) K, and PEG 1500 + sodium citrate, from (278.15 to 298.15) K. The rise of the temperature normally increased the slope of the tie line (STL). With respect to the influence of the type of salt, sodium citrate showed better capability to induce phase separation, when compared to potassium phosphate.
Resumo:
An evaluation of hydration and thermal decomposition of HAlg and its sodium salt is described using thermogravimetry (TG) and differential scanning calorimetry (DSC). TG curves in N2 and air, were obtained for alginic acid showed two decomposition steps attributed to loss of water and polymer decomposition respectively. The sodium alginate decomposed in three steps. The first attributed to water loss, followed by the formation of a carbonaceous residue and finally the Na2CO3. DSC curves presented peaks in agreement with the TG data. In the IR alginic acid presented bands at 1730 and 1631 cm-1, while sodium alginate presented a doublet at 1614 e 1431 cm-1, evidencing the presence of salified carboxyl groups.
Resumo:
Variation in salt tolerance of six natural populations of Stylosanthes humilis from three ecogeographic regions, Mata (wet tropical climate), Agreste and Sertão (semi-arid tropical climate) of Pernambuco State, Northeast Brazil, was evaluated on germination in 201 mM NaCl. There were significant differences among families of all populations for germination percentage and of five populations (except Tamandaré, from Mata) for germination rate. Populations from semi-arid regions presented high coefficients of genetic variation, those from Agreste being higher than those from Sertão. Populations from Mata showed low coefficients of genetic variation. The coefficients of genotypic determination were high for five populations, except Tamandaré, both for germination percentage ( > or = 0.89) and for germination rate ( > or = 0.79), indicating the possibility of selection for salt tolerance in these populations. An electrophoretic analysis of esterase and peroxidase isozymes was also performed in the six populations, and correlations were estimated between salt tolerance and allelic frequencies. The analysis of salt tolerant and salt sensitive families of populations from Agreste suggested an association of alleles of a peroxidase locus with salt tolerance during germination in the Caruaru population
Resumo:
Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity
Resumo:
We determined if the increased vascular responsiveness to endothelin-1 (ET-1) observed in male, but not in female, DOCA-salt rats is associated with differential vascular mRNA expression of ET-1 and/or ET A/ET B receptors or with functional differences in Ca2+ handling mechanisms by vascular myocytes. Uninephrectomized male and female Wistar rats received DOCA and drinking water containing NaCl/KCl. Control rats received vehicle and tap water. Blood pressure and contractile responses of endothelium-denuded aortic rings to agents which induce Ca2+ influx and/or its release from internal stores were measured using standard procedures. Expression of mRNA for ET-1 and ET A/ET B receptors was evaluated by RT-PCR after isolation of total cell RNA from both aorta and mesenteric arteries. Systolic blood pressure was higher in male than in female DOCA rats. Contractions induced by Bay K8644 (which activates Ca2+ influx through voltage-operated L-type channels), and by caffeine, serotonin or ET-1 in Ca2+-free buffer (which reflect Ca2+ release from internal stores) were significantly increased in aortas from male and female DOCA-salt compared to control aortas. DOCA-salt treatment of male, but not female, rats statistically increased vascular mRNA expression of ET-1 and ET B receptors, but decreased the expression of ET A receptors. Molecular up-regulation of vascular ET B receptors, rather than differential changes in smooth muscle Ca2+ handling mechanisms, seems to account for the increased vascular reactivity to ET-1/ET B receptor agonists and higher blood pressure levels observed in male DOCA-salt rats.
Resumo:
The present study determined the effect of an electrolytic lesion of the dorsal raphe nucleus (DRN) on water intake and sodium appetite. Male Wistar rats weighing 290-320 g with a lesion of the DRN (L-DRN), performed two days before experiments and confirmed by histology at the end of the experiments, presented increased sensitivity to the dehydration induced by fluid deprivation. The cumulative water intake of L-DRN rats reached 23.3 ± 1.9 ml (a 79% increase, N = 9) while sham-lesioned rats (SL-DRN) did not exceed 13.0 ± 1.0 ml (N = 11, P < 0.0001) after 5 h. The L-DRN rats treated with isoproterenol (300 µg kg-1 ml-1, sc) exhibited an increase in water intake that persisted throughout the experimental period (L-DRN, 15.7 ± 1.47 ml, N = 9 vs SL-DRN, 9.3 ± 1.8 ml, N = 11, P < 0.05). The L-DRN rats also showed an increased spontaneous sodium appetite during the entire period of assessment. The intake of 0.3 M NaCl after 12, 24, 36 and 72 h by the L-DRN rats was always higher than 20.2 ± 4.45 ml (N = 10), while the intake by SL-DRN was always lower than 2.45 ± 0.86 ml (N = 10, P < 0.00001). Sodium- and water-depleted L-DRN rats also exhibited an increased sodium appetite (13.9 ± 2.0 ml, N = 11) compared to SL-DRN (4.6 ± 0.64 ml, N = 11) after 120 min of observation (P < 0.02). The sodium preference of L-DRN rats in both conditions was always higher than that of SL-DRN rats. These results suggest that electrolytic lesion of the DRN overcomes a tonic inhibitory component of sodium appetite.
Resumo:
We determined if the dorsal raphe nucleus (DRN) exerts tonic control of basal and stimulated sodium and water intake. Male Wistar rats weighing 300-350 g were microinjected with phosphate buffer (PB-DRN, N = 11) or 1 µg/0.2 µl, in a single dose, ibotenic acid (IBO-DRN, N = 9 to 10) through a guide cannula into the DRN and were observed for 21 days in order to measure basal sodium appetite and water intake and in the following situations: furosemide-induced sodium depletion (20 mg/kg, sc, 24 h before the experiment) and a low dose of dietary captopril (1 mg/g chow). From the 6th day after ibotenic acid injection IBO-DRN rats showed an increase in sodium appetite (12.0 ± 2.3 to 22.3 ± 4.6 ml 0.3 M NaCl intake) whereas PB-DRN did not exceed 2 ml (P < 0.001). Water intake was comparable in both groups. In addition to a higher dipsogenic response, sodium-depleted IBO-DRN animals displayed an increase of 0.3 M NaCl intake compared to PB-DRN (37.4 ± 3.8 vs 21.6 ± 3.9 ml 300 min after fluid offer, P < 0.001). Captopril added to chow caused an increase of 0.3 M NaCl intake during the first 2 days (IBO-DRN, 33.8 ± 4.3 and 32.5 ± 3.4 ml on day 1 and day 2, respectively, vs 20.2 ± 2.8 ml on day 0, P < 0.001). These data support the view that DRN, probably via ascending serotonergic system, tonically modulates sodium appetite under basal and sodium depletion conditions and/or after an increase in peripheral or brain angiotensin II.
Resumo:
Ablation of the area postrema/caudal nucleus of the tractus solitarius (NTS) complex increases sodium intake, but the effect of selective lesions of the caudal NTS is not known. We measured depletion-induced sodium intake in rats with electrolytic lesions of the commissural NTS that spared the area postrema. One day after the lesion, rats were depleted of sodium with furosemide (10 mg/kg body weight, sc) and then had access to water and a sodium-deficient diet for 24 h when 1.8% NaCl was offered. Water and saline intakes were measured for 2 h. Saline intake was higher in lesioned than in sham-lesioned rats (mean ± SEM: 20 ± 2 vs 11 ± 3 mL/2 h, P < 0.05, N = 6-7). Saline intake remained elevated in lesioned rats when the tests were repeated 6 and 14 days after the lesion, and water intake in these two tests was increased as well. Water intake seemed to be secondary to saline intake both in lesioned and in sham-lesioned rats. A second group of rats was offered 10% sucrose for 2 h/day before and 2, 7, and 15 days after lesion. Sucrose intake in lesioned rats was higher than in sham-lesioned rats only 7 days after lesioning. A possible explanation for the increased saline intake in rats with commissural NTS lesions could be a reduced gastrointestinal feedback inhibition. The commissural NTS is probably part of a pathway for inhibitory control of sodium intake that also involves the area postrema and the parabrachial nucleus.
Resumo:
Salt sensitivity and insulin resistance are correlated with higher cardiovascular risk. There is no information about changes in salt sensitivity (SS) and insulin sensitivity (IS) after a chronic salt overload in humans. The aim of this study was to evaluate these parameters in the elderly. Seventeen volunteers aged 70.5 ± 5.9 years followed a low-salt diet (LSD) for 1 week and a high-salt diet (HSD) for 13 weeks. We evaluated SS after one week (HSD1) and after 13 weeks (HSD13), and subjects’ IS and lipids on their usual diet (UD) at HSD1, and at HSD13. Blood pressure (BP) was measured at each visit and ambulatory blood pressure monitoring (ABPM) was performed twice. SS was the same at HSD1 and HSD13. Systolic BP was lower on LSD than on UD (P = 0.01), HSD1 (P < 0.01) and HSD13 (P < 0.01). When systolic and diastolic BP were evaluated by ABPM, they were higher at HSD13 during the 24-h period (P = 0.03 and P < 0.01) and during the wakefulness period (P = 0.02 and P < 0.01) compared to the UD. Total cholesterol was higher (P = 0.04) at HSD13 than at HSD1. Glucose and homeostasis model assessment (HOMA) were lower at HSD1 (P = 0.02 and P = 0.01) than at HSD13. Concluding, the extension of HSD did not change the SS in an elderly group. The higher IS found at HSD1 did not persist after a longer HSD. A chronic HSD increased BP as assessed by ABPM.
Resumo:
It has been recently shown that calcium channel blockers might have a protective effect on cardiac fibrogenesis induced by aldosterone. The objective of this study was to evaluate the protective effect of felodipine, a dihydropyridine calcium channel blocker, against heart and kidney damage caused by aldosterone-high sodium intake in uninephrectomized rats. Wistar rats were divided into three groups: CNEP (uninephrectomized + 1% NaCl in the drinking water, N = 9); ALDO (same as CNEP group plus continuous infusion of 0.75 µg/h aldosterone, N = 12); ALDOF (same as ALDO group plus 30 mg·kg-1·day-1 felodipine in the drinking water, N = 10). All results were compared with those of age-matched, untreated rats (CTL group, N = 10). After 6 weeks, tail cuff blood pressure was recorded and the rats were killed for histological analysis. Blood pressure (mmHg) was significantly elevated (P < 0.05) in ALDO (180 ± 20) and ALDOF (168 ± 13) compared to CTL (123 ± 12) and CNEP (134 ± 13). Heart damage (lesion scores - median and interquartile range) was 7.0 (5.5-8.0) in ALDO and was fully prevented in ALDOF (1.5; 1.0-2.0). Also, left ventricular collagen volume fraction (%) in ALDOF (2.9 ± 0.5) was similar to CTL (2.9 ± 0.5) and CNEP (3.4 ± 0.4) and decreased compared to ALDO (5.1 ± 1.6). Felodipine partially prevented kidney injury since the damage score for ALDOF (2.0; 2.0-3.0) was significantly decreased compared to ALDO (7.5; 4.0-10.5), although higher than CTL (null score). Felodipine has a protective effect on the myocardium and kidney as evidenced by decreased perivascular inflammation, myocardial necrosis and fibrosis.
Resumo:
This study determined whether clinical salt-sensitive hypertension (cSSHT) results from the interaction between partial arterial baroreceptor impairment and a high-sodium (HNa) diet. In three series (S-I, S-II, S-III), mean arterial pressure (MAP) of conscious male Wistar ChR003 rats was measured once before (pdMAP) and twice after either sham (SHM) or bilateral aortic denervation (AD), following 7 days on a low-sodium (LNa) diet (LNaMAP) and then 21 days on a HNa diet (HNaMAP). The roles of plasma nitric oxide bioavailability (pNOB), renal medullary superoxide anion production (RMSAP), and mRNA expression of NAD(P)H oxidase and superoxide dismutase were also assessed. In SHM (n=11) and AD (n=15) groups of S-I, LNaMAP-pdMAP was 10.5±2.1 vs 23±2.1 mmHg (P<0.001), and the salt-sensitivity index (SSi; HNaMAP−LNaMAP) was 6.0±1.9 vs 12.7±1.9 mmHg (P=0.03), respectively. In the SHM group, all rats were normotensive, and 36% were salt sensitive (SSi≥10 mmHg), whereas in the AD group ∼50% showed cSSHT. A 45% reduction in pNOB (P≤0.004) was observed in both groups in dietary transit. RMSAP increased in the AD group on both diets but more so on the HNa diet (S-II, P<0.03) than on the LNa diet (S-III, P<0.04). MAP modeling in rats without a renal hypertensive genotype indicated that the AD*HNa diet interaction (P=0.008) increases the likelihood of developing cSSHT. Translationally, these findings help to explain why subjects with clinical salt-sensitive normotension may transition to cSSHT.
Resumo:
Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13BN rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure.