76 resultados para reversed-phase stationary phases
Resumo:
The presence of saponins and the molluscicidal activity of the roots, leaves, seeds and fruits of Swartzia langsdorffii Raddi (Leguminosae) against Biomphalaria glabrata adults and eggs were investigated. The roots, seeds and fruits were macerated in 95% ethanol. These extracts exerted a significant molluscicidal activity against B. glabrata, up to a dilution of 100 mg/l. Four mixtures (A2, B2, C and D) of triterpenoid oleanane type saponins were chromatographically isolated from the seed and fruit extracts. Two known saponins (1 and 2) were identified as beta-D-glucopyranosyl-[alpha-L-rhamnopyranosyl-(1->3)- beta-D-glucuronopyranosyl-(1->3)]-3beta-hydroxyolean-12-ene-28 -oate, and beta-D-glucopyranosyl-(1->3)-beta-D-glucuronopyranosyl-(1 ->3)]-3beta-hydroxyolean-12-ene-28-oate, respectively. These two saponins were present in all the mixtures, together with other triterpenoid oleane type saponins, which were shown to be less polar, by reversed-phase HPLC. The saponin identifications were based on spectral evidence, including ¹H-¹H two-dimensional correlation spectroscopy, nuclear Overhauser and exchange spectroscopy, heteronuclear multiple quantum coherence, and heteronuclear multiple-bond connectivity experiments. The toxicity of S. langsdorffii saponins to non-target organisms was prescreened by the brine shrimp lethality test.
Resumo:
ABSTRACT Increasing attention has been given, over the past decades, to the production of exopolysaccharides (EPS) from rhizobia, due to their various biotechnological applications. Overall characterization of biopolymers involves evaluation of their chemical, physical, and biological properties; this evaluation is a key factor in understanding their behavior in different environments, which enables researchers to foresee their potential applications. Our focus was to study the EPS produced by Mesorhizobium huakuii LMG14107, M. loti LMG6125, M. plurifarium LMG11892,Rhizobium giardini bv. giardiniH152T, R. mongolense LMG19141, andSinorhizobium (= Ensifer)kostiense LMG19227 in a RDM medium with glycerol as a carbon source. These biopolymers were isolated and characterized by reversed-phase high-performance liquid chromatography (RP-HPLC), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. Maximum exopolysaccharide production was 3.10, 2.72, and 2.50 g L-1for the strains LMG6125, LMG19227, and LMG19141, respectively. The purified EPS revealed prominent functional reactive groups, such as hydroxyl and carboxylic, which correspond to a typical heteropolysaccharide. The EPS are composed primarily of galactose and glucose. Minor components found were rhamnose, glucuronic acid, and galacturonic acid. Indeed, from the results of techniques applied in this study, it can be noted that the EPS are species-specific heteropolysaccharide polymers composed of common sugars that are substituted by non-carbohydrate moieties. In addition, analysis of these results indicates that rhizobial EPS can be classified into five groups based on ester type, as determined from the 13C NMR spectra. Knowledge of the EPS composition now facilitates further investigations relating polysaccharide structure and dynamics to rheological properties.
Resumo:
The genus Plumbago belongs to the family Plumbaginaceae, order Plumbaginales. Comparative chemical profile of P. scandens (native) and P. auriculata (cultivated) was obtained by normal and reversed-phase high performance liquid chromatography with photodiode array detector. Comparison of the ultraviolet espectra and the retention times for the compounds allowed to find similar metabolic patterns in roots, stems and leaves. Four flavonoids, one phenolic acid or derivative and the naphtoquinone plumbagin were comparatively identified to standards.
Resumo:
This study concerns certain problems inherent to the determination of fat-soluble vitamins in food, from extraction methods to identification and quantification. The discussion involves the main official and unofficial extraction methods coupled with spectrophotometric and HPLC techniques in which vitamins samples are obtained through liquid-liquid-solid and liquid-liquid-solid-solid extraction, indispensable to the analytical separation of different chemical compounds with vitamin functions. A saponification stage, possibly coupled with supercritical fluid extraction appears to be mandatory in the determination of vitamins A and E in their alcoholic forms. Alternative identification and quantification procedures are outlined: biological and chemical assays, analytical separations by HPLC (normal and reversed-phase), UV detection (all fat-soluble vitamins) and fluorescence detection (retinoids and tocopherols). Automation from sample preparation to quantification stages increases the data acquisition rate.
Resumo:
This paper describes the analytical methods for determination of total chlorogenic acid (CGA) and their individual isomers. Spectrofotometric methods are adequate for total CGA analysis in green coffee but they can provide inflated results for coffee products. High pressure liquid chromatography (HPLC) with gel permeation column and ultraviolet (UV) monitoring is adequate for the simultaneous analysis of total CGA, alkaloids and sugars in coffee products. HPLC-UV-reversed phase is a simple, rapid and precise method for the determination of the individual isomers of CGA. Gas chromatography (GC) also is applied to the analysis of the individual isomers but phenolic acids need to be derivatized before analysis. Both HPLC- and GC-mass spectrometry provide an unequivocal identification of the individual isomers. The capillary electrophoresis method is simple, rapid and adequate to the simultaneous analysis of polyphenols and xanthines. Advantages and limitations of each method are discussed throughout the text.
Resumo:
A flow system coupled to a tungsten coil atomizer in an atomic absorption spectrometer (TCA-AAS) was developed for As(III) determination in waters, by extraction with sodium diethyldithiocarbamate (NaDDTC) as complexing agent, and by sorption of the As(III)-DDTC complex in a micro-column filled with 5 mg C18 reversed phase (10 µL dry sorbent), followed by elution with ethanol. A complete pre-concentration/elution cycle took 208 s, with 30 s sample load time (1.7 mL) and 4 s elution time (71 µL). The interface and software for the synchronous control of two peristaltic pumps (RUN/ STOP), an autosampler arm, seven solenoid valves, one injection valve, the electrothermal atomizer and the spectrometer Read function were constructed. The system was characterized and validated by analytical recovery studies performed both in synthetic solutions and in natural waters. Using a 30 s pre-concentration period, the working curve was linear between 0.25 and 6.0 µg L-1 (r = 0.9976), the retention efficiency was 94±1% (6.0 µg L-1), and the pre-concentration coefficient was 28.9. The characteristic mass was 58 pg, the mean repeatability (expressed as the variation coefficient) was 3.4% (n=5), the detection limit was 0.058 µg L-1 (4.1 pg in 71 µL of eluate injected into the coil), and the mean analytical recovery in natural waters was 92.6 ± 9.5 % (n=15). The procedure is simple, economic, less prone to sample loss and contamination and the useful lifetime of the micro-column was between 200-300 pre-concentration cycles.
Resumo:
This work presents an alternative method for determination of the herbicides tebuthiuron and hexazinone in ground water. The extraction was made with dichloromethane and the analyses by high performance liquid chromatography (HPLC), using reversed-phase column, C-18, mobile phase methanol/water 50:50, v/v, detection and quantification at 247 nm. The following validation parameters were obtained: limit of detection of method 0.02 and 0.03 µg L-1, limit of quantification of method 0.07 and 0.09 µg L-1; linear range limit of quantification of instrument - 300 µg L-1 (r² > 0.998); recoveries from 90.3 to 108.2% and 90.3 to 101.6%; intermediary precision (%RSD) < 8 and < 6%, for hexazinone and tebuthiuron, respectively. The method showed to be efficient and reliable for determination of the herbicides in ground water.
Resumo:
The demand for analytical methods suitable for accurate and reproducible determination of drug enantiomers has increased significantly in the last years. High-performance liquid chromatography (HPLC) using chiral stationary phases and capillary electrophoresis (CE) are the most important techniques used for this purpose. In this paper, the fundamental aspects of chiral separations using both techniques are presented. Some important aspects for the development of enantioselective methods, particularly for the analysis of drugs and metabolites in biological samples, are also discussed.
Resumo:
This paper presents a review of some published proposals for the analysis of sodium alendronate. The drug is an aminobisphosphonate compound used to inhibit the osteoclastic resorption of bone, and different methods were developed for its quantitative determination. These methodologies employed reversed-phase or ion-exchange HPLC analysis, both associated with different detectors: UV and fluorescence detection after derivatization of the drug, conductivity and refractive index detectors, as well as the indirect UV detection. Titrimetry and spectrophotometry (with previous complexation of the drug), which are simpler procedures, were also described, but they showed poor specificity when compared to liquid chromatography.
Resumo:
Monolithic stationary phases represent a new generation of chromatographic separation media. These phases consist of a continuous separation bed prepared by in situ polymerization or consolidation inside the column tubing. In recent years, their simple preparation procedure, unique properties and excellent performance have attracted quite remarkable attention in liquid chromatography and capillary electrochromatography. This review summarizes the preparation, characterization and applications of monolithic stationary phases. The analytical potential of these columns is demonstrated with separations involving various families of compounds in different separation modes.
Resumo:
There is great interest nowadays in the use of preparative liquid chromatography as an effective tool for the production of enantiomerically pure, or enriched, compounds for the pharmaceutical industry. To make the chromatographic process economically attractive, attention is now focused on the choice of the chromatographic operating mode to minimize eluent consumption and to maximize productivity. Among the alternatives to the traditional batch chromatography, attention is now shifting towards simulated moving bed (SMB) technologies and a review covering the latest developments in this area seems timely. Several aspects of this important analytical technique are presented and details concerning the SMB technology for process optimization are outlined.
Resumo:
Gravimetric and Bailey-Andrew methods are tedious and provide inflated results. Spectrofotometry is adequate for caffeine analysis but is lengthy. Gas chromatography also is applied to the caffeine analysis but derivatization is needed. High performance liquid chromatography with ultraviolet detection (HPLC-UV) and reversed phase is simple and rapid for xanthine multianalysis. In HPLC-UV-gel permeation, organic solvents are not used. HPLC-mass spectrometry provides an unequivocal structural identification of xanthines. Capillary electrophoresis is fast and the solvent consumption is smaller than in HPLC. Chemometric methods offer an effective means for chemical data handling in multivariate analysis. Infrared spectroscopy alone or associated with chemometries could predict the caffeine content in a very accurate form. Electroanalytical methods are considered of low cost and easy application in caffeine analysis.
Resumo:
Itraconazole is a synthetic antifungal drug administered orally with a broad spectrum of activity against mycotic infections. The present work consists of the development and validation of analytical methodology for evaluation of itraconazole in pharmaceutical products by high performance liquid chromatography. The separation was made using the reversed-phase column LC-18, acetonitrile/diethylamine 0.05% v/v, 60:40 v/v, pH 8.0 as mobile phase, methanol as solvent and detection and quantification at 254 nm. The results here obtained show that the analytical methodology is accurate, reproducible, robust and linear over the concentration range 8.0-12.0 µg/mL of itraconazole. The method was applied to pharmaceutical capsules containg itraconazole pellets and showed to be efficient, yielding good results.
Resumo:
A UV spectrophotometric method was developed and validated and a chromatographic method was adapted from the American Pharmacopeia for the analysis of Fluoxetine Hydrochloride capsules. Ethanol was used as solvent for the spectrophotometric method, with detection and determination at 276 nm. The separation for the chromatographic method was carried out using the reversed-phase column LC-8, triethylamine buffer, stabilizer free tetrahydrofuran and methanol (5:3.5:1.5), pH 6.0 as mobile phase and detection at 227 nm. The results obtained for both methods showed to be accurate, precise, robust and linear over the concentration range 100.00 - 300.00 µg/mL and 40.00 - 80.00 µg/mL of fluoxetine hydrochloride for the spectrophotometric and chromatographic methods, respectively. The accuracy of the methods was evaluated by a recovery test and showed results between 98.89 and 101.10%.
Resumo:
A simple liquid chromatographic method for the simultaneous determination of creatinine, hippuric acid, mandelic acid, phenylglyoxylic acid and o, m and p-methylhippuric acids was developed and validated. Sample preparation was only dilution with water (1:10), followed by centrifugation. Analysis was performed in a reversed phase column (Lichrospher RP 8ec), 250 x 4.0 mm, with isocratic elution with phosphate buffer pH 2.3 and acetonitrile (90:10, v/v). The method presents adequate linearity, precision and accuracy and allows the simultaneous determination of the biomarkers of exposure to toluene, xylene and styrene together with creatinine, reducing cost and laboratory time.