78 resultados para recurrent sequence
Resumo:
We have isolated a clone of Trypanosoma cruzi genimic DNA, lambda 3b2-5, which contains sequences that are reiterated in the genome. Northtern blot analysis showed that clone 3b2-5 hybridizes to 1,200-5,000 bases different mRNA species. The number of mRNAs species hybridized to clone 3b2-5 exceeds its coding capacity showing that this clone carries sequences that are common to several mRNAs species and conserved in the poly A(+) RNA. These sequences are not homologous to the T. cruzi spliced leader sequence, since clone 3b2-5 hybridize to a synthetic 20 nucleotice complementary to the spliced leader sequence. Clone 3b2-5 does not hybridize to DNA and RNA from several genera of Trypanosomatidae and other Trypanosoma species indicating that it carries T. cruzi species-specific sequences.
Resumo:
Tandemly repeated DNA sequences are found in the genome of higher eukaryotes, and have also been demonstrated in Trypanosoma cruzi. Repeated DNA sequences are potentially useful for the diagnostic detection of T. cruzi (A. Gonzales et al., 1984, Proc. Natl. Acad. Sci. USA, 81: 3356-3360). We have isoleted two clones from a genomic library of T. cruzi (Y strain) that contain, in one clone a family of at least seven copies of a repetitive sequence of approximately 600 base pairs, and in the other an independent copy of the same sequence. One copy of the repetition (HSP) and the independent clone (HCR) were sequenced by the Sanger procedure (Fig.). This sequence hybridized to four strains of T. cruzi tested and did not hybridize to eleven species of trypanosotids from five different Genera, being a good candidate for diagnostic assays. GenBank accession numbers: HSP#m31919, HCR#31920.
Resumo:
The P126 protein, a parasitosphorus vacuole antigen of Plasmodium falciparum has beenshoen to induce protective immunity in Saimiri and Aotus monkeys. In the present work we investigated its immunogenicity. Our results suggest that the N-term of P126 is poorly immunogenic and antibody response against the P126 could be under a MHC restricted control in C57BL/6(H-2b) mice, which could be problematic in ternms of a use of the P126 in a vaccine program. However, we observed that a synthetic peptide, copying the 6 octapeptide repeat corresponding to the N-term of the P126, induces an antibody response to the native molecule in C57BL/6 non-responder mice. Moreover, the vaccine-P126 recombinant induced anmtibodies against the N-term of the molecule in rabbits while the unprocessed P126 did not.
Update of the Gene Discovery Program in Schistosoma mansoni with the Expressed Sequence Tag Approach
Resumo:
Continuing the Schistosoma mansoni Genome Project 363 new templates were sequenced generating 205 more ESTs corresponding to 91 genes. Seventy four of these genes (81%) had not previously been described in S. mansoni. Among the newly discovered genes there are several of significant biological interest such as synaptophysin, NIFs-like and rho-GDP dissociation inhibitor
Resumo:
Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines.
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Resumo:
Biomphalaria glabrata, B. tenagophila and B. straminea are intermediate hosts of Schistosoma mansoni, in Brazil. The latter is of epidemiological importance in the northwest of Brazil and, due to morphological similarities, has been grouped with B. intermedia and B. kuhniana in a complex named B. straminea. In the current work, we have standardized the simple sequence repeat anchored polymerase chain reaction (SSR-PCR) technique, using the primers (CA)8RY and K7, to study the genetic variability of these species. The similarity level was calculated using the Dice coefficient and genetic distance using the Nei and Li coefficient. The trees were obtained by the UPGMA and neighbor-joining methods. We have observed that the most related individuals belong to the same species and locality and that individuals from different localities, but of the same species, present clear heterogeneity. The trees generated using both methods showed similar topologies. The SSR-PCR technique was shown to be very efficient in intrapopulational and intraspecific studies of the B. straminea complex snails.
Resumo:
In the last decade, dengue fever (DF) in Brazil has been recognized as an important public health problem, and an increasing number of dengue haemorrhagic fever (DHF) cases have been reported since the introduction of dengue virus type 2 (DEN-2) into the country in 1990. In order to analyze the complete genome sequence of a DEN-2 Brazilian strain (BR64022/98), we designed primers to amplify contiguous segments of approximately 500 base pairs across the entire sequence of the viral genome. Twenty fragments amplified by reverse transcriptase-PCR were cloned, and the complete nucleotide and the deduced amino acid sequences were determined. This constitutes the first complete genetic characterization of a DEN-2 strain from Brazil. All amino acid changes differentiating strains related to the Asian/American-Asian genotype were observed in BR64022/98, indicating the Asiatic origin of the strain.
Resumo:
Simple sequence repeat anchored polymerase chain reaction amplification (SSR-PCR) is a genetic typing technique based on primers anchored at the 5' or 3' ends of microsatellites, at high primer annealing temperatures. This technique has already been used in studies of genetic variability of several organisms, using different primer designs. In order to conduct a detailed study of the SSR-PCR genomic targets, we cloned and sequenced 20 unique amplification products of two commonly used primers, CAA(CT)6 and (CA)8RY, using Biomphalaria glabrata genomic DNA as template. The sequences obtained were novel B. glabrata genomic sequences. It was observed that 15 clones contained microsatellites between priming sites. Out of 40 clones, seven contained complex sequence repetitions. One of the repeats that appeared in six of the amplified fragments generated a single band in Southern analysis, indicating that the sequence was not widespread in the genome. Most of the annealing sites for the CAA(CT)6 primer contained only the six repeats found within the primer sequence. In conclusion, SSR-PCR is a useful genotyping technique. However, the premise of the SSR-PCR technique, verified with the CAA(CT)6 primer, could not be supported since the amplification products did not result necessarily from microsatellite loci amplification.
Resumo:
Human T cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes leukemia and the neurological disorder HTLV-1 associated myelopathy or tropical spastic paraparesis (HAM/TSP). Infection with this virus - although it is distributed worldwide - is limited to certain endemic areas of the world. Despite its specific distribution and slow mutation rate, molecular epidemiology on this virus has been useful to follow the movements of human populations and routes of virus spread to different continents. In the present study, we analyzed the genetic variability of a region of the env gene of isolates obtained from individuals of African origin that live on the Pacific coast of Colombia. Sequencing and comparison of the fragment with the same fragment from different HTLV-1 isolates showed a variability ranging from 0.8% to 1.2%. Phylogenetic studies permit us to include these isolates in the transcontinental subgroup A in which samples isolated from Brazil and Chile are also found. Further analyses will be necessary to determine if these isolates were recently introduced into the American continent or if they rather correspond to isolates introduced during the Paleolithic period.
Resumo:
A total of 880 expressed sequence tags (EST) originated from clones randomly selected from a Trypanosoma cruzi amastigote cDNA library have been analyzed. Of these, 40% (355 ESTs) have been identified by similarity to sequences in public databases and classified according to functional categorization of their putative products. About 11% of the mRNAs expressed in amastigotes are related to the translational machinery, and a large number of them (9% of the total number of clones in the library) encode ribosomal proteins. A comparative analysis with a previous study, where clones from the same library were selected using sera from patients with Chagas disease, revealed that ribosomal proteins also represent the largest class of antigen coding genes expressed in amastigotes (54% of all immunoselected clones). However, although more than thirty classes of ribosomal proteins were identified by EST analysis, the results of the immunoscreening indicated that only a particular subset of them contains major antigenic determinants recognized by antibodies from Chagas disease patients.
Resumo:
The number of sequences generated by genome projects has increased exponentially, but gene characterization has not followed at the same rate. Sequencing and analysis of full-length cDNAs is an important step in gene characterization that has been used nowadays by several research groups. In this work, we have selected Schistosoma mansoni clones for full-length sequencing, using an algorithm that investigates the presence of the initial methionine in the parasite sequence based on the positions of alignment start between two sequences. BLAST searches to produce such alignments have been performed using parasite expressed sequence tags produced by Minas Gerais Genome Network against sequences from the database Eukaryotic Cluster of Orthologous Groups (KOG). This procedure has allowed the selection of clones representing 398 proteins which have not been deposited as S. mansoni complete CDS in any public database. Dedicated sequencing of 96 of such clones with reads from both 5' and 3' ends has been performed. These reads have been assembled using PHRAP, resulting in the production of 33 full-length sequences that represent novel S. mansoni proteins. These results shall contribute to construct a more complete view of the biology of this important parasite.
Resumo:
The characterization of expressed sequence tags (ESTs) generated from a cDNA library of Leishmania (Leishmania) amazonensis amastigotes is described. The sequencing of 93 clones generated new L. (L.) amazonensis ESTs from which 32% are not related to any other sequences in database and 68% presented significant similarities to known genes. The chromosome localization of some L. (L.) amazonensis ESTs was also determined in L. (L.) amazonensis and L. (L.) major. The characterization of these ESTs is suitable for the genome physical mapping, as well as for the identification of genes encoding cysteine proteinases implicated with protective immune responses in leishmaniasis.