65 resultados para reconstructed epidermis
Resumo:
It is described the histopathology of the infection of Tilapia rendalli (Osteichthyes, Perciformes, Cichlidae) and Hypostomus regani (Osteichthyes, Siluriformes, Loricariidae) by lasidium larvae of Anodontites trapesialis (Mollusca, Bivalvia, Mycetopodidae). The larvae were encysted within the epidermis of the host, being surrounded by a thin hyaline membrane, 3-6 µm thick, of parasite origin. A proliferative host cell reaction did not occur. The histopathology of the infection shows that the lesions induced by the parasites are minimal. However, the numerous small lesions produced by the release of the larvae may provide optimal conditions for the infection by opportunistic pathogens, namely fungus, which may eventually cause the death of the host.
Resumo:
Cutaneous leishmaniasis (CL) is the most frequent clinical form of tegumentary leishmaniasis and is characterised by a single or a few ulcerated skin lesions that may disseminate into multiple ulcers and papules, which characterise disseminated leishmaniasis (DL). In this study, cells were quantified using immunohistochemistry and haematoxylin and eosin staining (CD4+, CD68+, CD20+, plasma cells and neutrophils) and histopathology was used to determine the level of inflammation in biopsies from patients with early CL, late CL and DL (ulcers and papules). The histopathology showed differences in the epidermis between the papules and ulcers from DL. An analysis of the cells present in the tissues showed similarities between the ulcers from localised CL (LCL) and DL. The papules had fewer CD4+ T cells than the DL ulcers. Although both CD4+ cells and macrophages contribute to inflammation in early CL, macrophages are the primary cell type associated with inflammation intensity in late ulcers. The higher frequency of CD20+ cells and plasma cells in lesions demonstrates the importance of B cells in the pathogenesis of leishmaniasis. The number of neutrophils was the same in all of the analysed groups. A comparison between the ulcers from LCL and DL and the early ulcers and papules shows that few differences between these two clinical forms can be distinguished by observing only the tissue.
Resumo:
Plant trichomes can difficult the attachment and movement of small insects. Here, we examine the hypothesis that the success on the use of densely haired hosts by two cassidine species is determined by differential morphology and behavior. Larvae of Gratiana graminea (Klug, 1829) and Gratiana conformis (Boheman, 1854) move on the leaf surface of their host, Solanum guaraniticum Hassl by anchoring their tarsungulus on the trichome rays or by inserting the tarsungulus tip directly into epidermis. This kind of movement is only possible due to a similar tarsungulus shape among the species. Tarsungulus growth pattern is also similar between species, being relatively small on the posterior aperture, matching the diameter of the host plant trichome rays. The tarsungulus shape associated with differences on ontogenetic growth and attachment pattern allow these two Cassidinae larvae to efficiently move on the pubescent leaf surface of their host.
Resumo:
Polybia scutellaris (White, 1841) is a social wasp of biological interest for its role as pollinator and maybe as biological control agent of sanitary and agricultural pests. This study examines the digestive tract contents of the larvae of P. scutellaris from four nests in Magdalena (Buenos Aires province, Argentina). Contents included both animal (arthropod parts) and plant (pollen, leaf and fruit epidermis) parts. The pollen content analysis showed that the wasps visited 19 different taxa of plants during the last active period of the colony before the nests had been collected. The range of sources used by P. scutellaris allows us characterizing the species as a generalist flower visitor. Wasps visited both native and exotic plants located nearby the nest. Most of the epidermal plant remains found in the larval digestive tract belonged to Malvaceae, a family not exploited by the studied colonies as pollen source.
Resumo:
Expression profile of a Laccase2 encoding gene during the metamorphic molt in Apis mellifera (Hymenoptera, Apidae). Metamorphosis in holometabolous insects occurs through two subsequent molting cycles: pupation (metamorphic molt) and adult differentiation (imaginal molt). The imaginal molt in Apis mellifera L. was recently investigated in both histological and physiological-molecular approaches. Although the metamorphic molt in this model bee is extremely important to development, it is not well-known yet. In the current study we used this stage as an ontogenetic scenario to investigate the transcriptional profile of the gene Amlac2, which encodes a laccase with an essential role in cuticle differentiation. Amlac2 expression in epidermis was contrasted with the hemolymph titer of ecdysteroid hormones and with the most evident morphological events occurring during cuticle renewal. RT-PCR semiquantitative analyses using integument samples revealed increased levels of Amlac2 transcripts right after apolysis and during the subsequent pharate period, and declining levels near pupal ecdysis. Compared with the expression of a cuticle protein gene, AmelCPR14, these results highlighted the importance of the ecdysteroid-induced apolysis as an ontogenetic marker of gene reactivation in epidermis for cuticle renewal. The obtained results strengthen the comprehension of metamorphosis in Apis mellifera. In addition, we reviewed the literature about the development of A. mellifera, and emphasize the importance of revising the terminology used to describe honey bee molting cycles.
Resumo:
The deleterious effects of both Mn deficiency and excess on the development of plants have been evaluated with regard to aspects of shoot anatomy, ultrastructure and biochemistry, focusing mainly on the manifestation of visual symptoms. However, there is little information in the literature on changes in the root system in response to Mn supply. The objective of this study was to evaluate the effects of Mn doses (0.5, 2.0 and 200.0 μmol L-1) in a nutrient solution on the anatomy of leaves and roots of the Glycine max (L.) cultivars Santa Rosa, IAC-15 and IAC-Foscarin 31. Visual deficiency symptoms were first observed in Santa Rosa and IAC-15, which were also the only cultivars where Mn-toxicity symptoms were observed. Only in IAC-15, a high Mn supply led to root diameter thickening, but without alteration in cells of the bark, epidermis, exodermis and endodermis. The degree of disorganization of the xylem vessels, in particular the metaxylem, differed in the cultivars. Quantity and shape of the palisade parenchyma cells were influenced by both Mn deficiency and toxicity. A reduction in the number of chloroplasts was observed in the three Mn-deficient genotypes. The anatomical alterations in IAC-15 due to nutritional stress were greater, as expressed in extensive root cell cytoplasm disorganization and increased vacuolation at high Mn doses. The degree of changes in the anatomical and ultrastructural organization of roots and leaves of the soybean genotypes studied differed, suggesting the existence of tolerance mechanisms to different intensities of Mn deficiency or excess.
Resumo:
Aluminum (Al) toxicity is one of the most limiting factors for productivity. This research was carried out to assess the influence of Al nutrient solution on plant height, dry weight and morphoanatomical alterations in corn (Zea mays L.) roots and leaves. The experiment was conducted in a greenhouse with five treatments consisting of Al doses (0, 25, 75, 150, and 300 µmol L-1) and six replications. The solutions were constantly aerated, and the pH was initially adjusted to 4.3. The shoot dry matter, root dry matter and plant height decreased significantly with increasing Al concentrations. Compared to the control plants, it was observed that the root growth of corn plants in Al solutions was inhibited, there were fewer lateral roots and the development of the root system reduced. The leaf anatomy of plants grown in solutions containing 75 and 300 µmol L-1 Al differed in few aspects from the control plants. The leaf sheaths of the plants exposed to Al had a uniseriate epidermis coated with a thin cuticle layer, and the cells of both the epidermis and the cortex were less developed. In the vascular bundle, the metaxylem and protoxylem had no secondary walls, and the diameter of both was much smaller than of the control plants.
Resumo:
Kudzu is a cover crop that has escaped cultivation in some subtropical and warm temperate regions. Kudzu has previously demonstrated broad intraspecific physiological plasticity while colonizing new environments. The objective of this paper was to investigate characteristics of kudzu leaflet anatomy that might contribute to its successful growth in climatically distinct environments, and to escape cultivation as well. Fresh and fixed leaflet strips of field-grown plants were analyzed. The lower epidermis of kudzu showed a higher frequency of stomata (147 ± 19 stomata mm-2) than the upper epidermis (26 ± 17 stomata mm-2). The average number of trichomes per square milimeter was 8 for both the upper and the lower epidermis. The average trichome length was 410 ± 200 mum for the upper epidermis and 460 ± 190 mum for the lower epidermis. Cuticle thickness was not considerably different between lower and upper epidermis. The leaflet blade consisted basically of two layers (upper and lower) of unicellular epidermis, two layers of palisade parenchyma and one layer of spongy parenchyma. One layer of paraveinal mesophyll was found between palisade and spongy parenchyma. In conclusion, leaflets of kudzu present anatomical characteristics that might contribute to the broad physiological plasticity shown by kudzu.
Resumo:
Extrafloral nectaries (EFNs) are structurally variable and widely spread among the angiosperms. The occurrence of EFNs in leaves of Pterodon polygalaeflorus Benth. and Pterodon pubescens Benth. (Fabaceae: Papilionoideae) were detected in adult specimens, at the time of production of new buds and flowers. The goals of the present study are to register the occurrence of the EFNs in P. pubescens and P. polygalaeflorus, and provide comparative data on the anatomical structures. The EFNs occur in the rachis and are located under the insertion of each petiolule. Each nectary consists of a small elevation whose apical portion is deeply invaginated, resulting in a depression (secretory pole), a common characteristic of both species. Unicellular, nonglandular trichomes occur along the rachis, being less numerous in P. polygalaeflorus while in P. pubescens they cover the EFNs. The secretory tissue consists of parenchyma cells with dense cytoplasm compactly arranged. The nectar reaches the surface of the EFNs by rupturing the thin cuticle which covers the secretory pole, since both species lack stomata or any other interruption at the epidermis. The basic difference between the two species, in relation to the EFNs, is the density of the pubescence, which is always greater in P. pubescens. Structural and dimensional modifications may be observed, even between basal and apical nectaries in the same rachis, so it does not constitute a taxonomical tool.
Resumo:
The objective of this work was to evaluate leaf epidermis morphological characteristics of three citrus somatic hybrids, compared to their parents. Parental and somatic hybrid young leaves were collected and processed for scanning electron microscope observations. Citrus polyploid hybrids have fewer stomata per area and these are larger compared to their diploid parental parents. No differences in internal arrangement of the stomatal cells were detected between parental plants and somatic hybrids. Additional studies may determine if these differences will influence physiological behavior of the plants in the field.
Resumo:
El propósito de esta investigación fue estudiar las relaciones ambientales de disponibilidad de humedad, con las características anatómicas del sistema de conducción de agua y estomático, en cinco genotipos de duraznos mexicanos con diferentes orígenes (Jalatzingo y Misantla, Veracruz; Temascaltepec, México; Tulancingo, Oaxaca; Sombrerete, Zacatecas), un almendro y el portainjerto Nemaguard. Fueron caracterizados anatómicamente brotes, hojas y estomas de plántulas de seis meses de edad, mediante 25 caracteres. El almendro y el portainjerto Nemaguard presentaron diferencias con respecto a los duraznos, los cuales tuvieron mayor similitud, aunque mantuvieron una separación acorde con su origen. Los caracteres que diferenciaron los grupos fueron: densidad estomática, grosor de la epidermis superior, número, frecuencia y perímetro de vasos, el índice de vulnerabilidad de la nervadura central, y el porcentaje de médula, xilema y floema del brote. Las condiciones de disponibilidad de humedad del origen presentaron fuerte asociación con las características anatómicas estudiadas, debido a que los ambientes con mayor déficit de humedad (Tulancingo y Sombrerete) presentaron mayor tamaño y menor frecuencia de vasos de xilema, así como bajo porcentaje de xilema y floema en brote, lo que puede interpretarse como adaptaciones de resistencia a sequía. La zona donde es rara la ocurrencia de sequía (Jalatzingo) presentó características opuestas.
Resumo:
The objective of this work was to visualize the association between microcracking and other epidermal chilling injury symptoms, and to identify rots in cucumber fruit (Cucumis sativus L.) by scanning electron microscopy (SEM). Depressed epidermal areas and surface cracking due to damages of subepidermal cells characterized the onset of pitting in cucumber fruit. The germination of conidia of Alternaria alternata, with some of them evident on the fractures in the cultivar Trópico, occurred after damaging on the epidermis. Before, the chilling injury symptoms became visible, Stemphylium herbarum conidia germinated, and mycelium penetrated through the hypodermis using the microcracks as pathway. In the cultivar Perichán 121 the fungus was identified as Botrytis cinerea.
Resumo:
The objective of this work was to assess the effect of successive selection cycles on leaf plasticity of 'Saracura' maize BRS-4154 under periodical flooding in field conditions. Soil flooding started at the six-leaf stage with the application of a 20-cm depth water layer three times a week. At flowering, samples of leaves were collected and fixed. Paradermic and transverse sections were observed under photonic microscope. Several changes were observed throughout the selection cycles, such as modifications in the number and size of the stomata, higher amount of vascular bundles and the resulting decrease of the distance between them, smaller diameter of the metaxylem, decrease of cuticle and epidermis thickness, decrease of number and size of bulliform cells, increase of phloem thickness, smaller sclerenchyma area. Therefore, the successive selection cycles of 'Saracura' maize resulted in changes in the leaf anatomy, which might be favorable to the plant's tolerance to the intermittent flooding of the soil.
Resumo:
It was evaluated the genetic divergence in peach genotypes for brown rot reaction. It was evaluated 26 and 29 peach genotypes in the 2009/2010 and 2010/2011 production cycle, respectively. The experiment was carried out at the Laboratório de Fitossanidade, da UTFPR - Campus Dois Vizinhos. The experimental design was entirely randomized, considering each peach genotype a treatment, and it was use three replication of nine fruits. The treatment control use three replication of three peach. The fruit epidermis were inoculated individually with 0.15 mL of M. fructicola conidial suspension (1.0 x 10(5) spores mL-1). In the control treatment was sprayed with 0.15 mL of distilled water. The fruits were examined 72 and 120 hours after inoculation, and the incidence and severity disease were evaluated. These results allowed realized study for genetic divergence, used as dissimilarity measure the Generalized Mahalanobis distance. Cluster analysis using Tocher´s optimization method and distances in the plan were applied. There was smallest genetic divergence among peach trees evaluated for brown rot, what can difficult to obtain resistance in the genotypes.
Resumo:
The present study evaluated the anatomy, chlorophyll content and photosynthetic potential of grapevine leaves grown under plastic cover. The experiment was carried out in vineyards of Moscato Giallo cultivar covered and uncovered with plastic. A block design with 10 selected plants was used for each area (covered and uncovered). Twelve leaves (six of them fully exposed to solar radiation and six grown under shaded conditions) were collected from each area and were fixed and analyzed microscopically (thickness of the adaxial and abaxial epidermis and of the palisade and spongy parenchymas). Chlorophyll content and photosynthetic potential were determined in the vineyard at veraison and after harvest. Plastic covering increased the thickness of the palisade parenchyma in exposed and shaded leaves due to solar radiation restriction. However, the leaves from the covered vineyard did not have the same response to the restriction of solar radiation, as observed in the uncovered vineyard. The thickness of the adaxial and abaxial epidermis and of the spongy parenchyma did not vary due to solar radiation restriction. Chlorophyll content increased in the leaves of covered plants. The photosynthetic potential of the vines is not affected by solar radiation restriction imposed by plastic cover due to anatomical modification in leaves.