75 resultados para receptor activator of nuclear factor-kappa B ligand
Resumo:
Previous studies have examined the arrangement of regulatory elements along the apolipoprotein B (apoB) promoter region (-3067 to +940) and a promoter fragment extending from nucleotides -150 to +124 has been demonstrated to be essential for transcriptional activation of the apoB gene in hepatic and intestinal cells. It has also been shown that transcriptional activation of apoB requires a synergistic interaction between hepatic nuclear factor-4 (HNF-4) and CCAAT/enhancer-binding protein a (C/EBPa) transcription factors. Here, we have examined the hypothesis that HNF-4 factor binding to DNA may induce a DNA helix bend, thus facilitating the communication with a C/EBPa factor located one helix turn from this HNF-4 factor in the apoB promoter. A gel electrophoretic mobility shift assay using wild type double-stranded oligonucleotides or modified wild type duplex oligonucleotides with 10 nucleotides inserted between HNF-4 and C/EBPa factor motifs showed similar retarded complexes, indicating that HNF-4 and C/EBPa factors interact independently of the distance between binding sites. However, when only one base, a thymidine, was inserted at the -71 position of the apoB promoter, the complex shift was completely abolished. In conclusion, these results regarding the study of the mechanisms involving the interaction between HNF-4 and C/EBPa factors in the apoB promoter suggest that the perfect 5'-CCCTTTGGA-3' motif is needed in order to facilitate the interaction between the two factors.
Resumo:
PURPOSE:To compare the prognostic and predictive features between in situ and invasive components of ductal breast carcinomas. METHODS:We selected 146 consecutive breast samples with ductal carcinoma in situ (DCIS) associated with adjacent invasive breast carcinoma (IBC). We evaluated nuclear grade and immunohistochemical expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6 (CK5/6), and epidermal growth factor receptor (EGFR) in both components, in situ and invasive, and the Ki-67 percentage of cells in the invasive part. The DCIS and IBC were classified in molecular surrogate types determined by the immunohistochemical profile as luminal (RE/PR-positive/ HER2-negative), triple-positive (RE/RP/HER2-positive), HER2-enriched (ER/PR-negative/HER2-positive), and triple-negative (RE/RP/HER2-negative). Discrimination between luminal A and luminal B was not performed due to statistical purposes. Correlations between the categories in the two groups were made using the Spearman correlation method. RESULTS:There was a significant correlation between nuclear grade (p<0.0001), expression of RE/RP (p<0.0001), overexpression of HER2 (p<0.0001), expression of EGFR (p<0.0001), and molecular profile (p<0.0001) between components in situ and IBC. CK 5/6 showed different distribution in DCIS and IBC, presenting a significant association with the triple-negative phenotype in IBC, but a negative association among DCIS. CONCLUSIONS: Our results suggest that classical prognostic and predictive features of IBC are already determined in the preinvasive stage of the disease. However the role of CK5/6 in invasive carcinoma may be different from the precursor lesions.
Resumo:
Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-κB and CREB, which regulate genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine. However, the attenuation of NF-κB activity after the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine is, at least partially, due to activation of D1 receptors. NF-κB seems to have a protective role in these cells because its inhibition increased cellular death caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role of both CREB and NF-κB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of degenerative processes.
Resumo:
The effects of the benzodiazepine1 (BZ1) receptor agonist SX-3228 were studied in rats (N = 12) implanted for chronic sleep procedures. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228, sc, to rats 1 h after the beginning of the light phase of the light-dark cycle induced a significant reduction of rapid-eye-movement sleep (REMS) during the third recording hour. Moreover, slow wave sleep (SWS) was increased during the fourth recording hour after the two largest doses of the compound. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228 one hour after the beginning of the dark period of the light-dark cycle caused a significant and maintained (6-h recording period) reduction of waking (W), whereas SWS and light sleep (LS) were increased. REMS values tended to increase during the entire recording period; however, the increase was statistically significant only for the 1.0 mg/kg dose during the first recording hour. In addition, a significant and dose-related increase of power density in the delta and the theta regions was found during nonREM sleep (LS and SWS) in the dark period. Our results indicate that SX-3228 is a potent hypnotic when given to the rat during the dark period of the light-dark cycle. Moreover, the sleep induced by SX-3228 during the dark phase closely resembles the physiological sleep of the rat.
Resumo:
A correlation between cancer and hypercoagulability has been described for more than a century. Patients with cancer are at increased risk for thrombotic complications and the clotting initiator protein, tissue factor (TF), is possibly involved in this process. Moreover, TF may promote angiogenesis and tumor growth. In addition to TF, thrombin seems to play a relevant role in tumor biology, mainly through activation of protease-activated receptor-1 (PAR-1). In the present study, we prospectively studied 39 lung adenocarcinoma patients in relation to the tumor expression levels of TF and PAR-1 and their correlation with thrombosis outcome and survival. Immunohistochemical analysis showed TF positivity in 22 patients (56%), most of them in advanced stages (III and IV). Expression of PAR-1 was found in 15 patients (39%), most of them also in advanced stages (III and IV). Remarkably, no correlation was observed between the expression of TF or PAR-1 and risk for thrombosis development. On the other hand, patients who were positive for TF or PAR-1 tended to have decreased long-term survival. We conclude that immunolocalization of either TF or PAR-1 in lung adenocarcinoma may predict a poor prognosis although lacking correlation with thrombosis outcome.
Resumo:
A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation.
Resumo:
Immune response plays an important role in the development of hepatic fibrosis. In the present study, we investigated the effects of quercetin on hepatitis and hepatic fibrosis induced by immunological mechanism. In the acute hepatitis model, quercetin (2.5 mg/kg) was injected iv into mice 30 min after concanavalin A (Con A) challenge. Mice were sacrificed 4 or 24 h after Con A injection, and aminotransferase tests and histopathological sections were performed. Treatment with quercetin significantly decreased the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Consistent with this observation, treatment with quercetin markedly attenuated the pathologic changes in the liver. A hepatic fibrosis model was also generated in mice by Con A challenge once a week for 6 consecutive weeks. Mice in the experimental group were treated with daily iv injections of quercetin (0.5 mg/kg). Histopathological analyses revealed that treatment with quercetin markedly decreased collagen deposition, pseudolobuli development, and hepatic stellate cells activation. We also examined the effects of quercetin on the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transforming growth factor beta (TGF-β) pathways by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). NF-κB and TGF-β production was decreased after treatment with quercetin, indicating that the antifibrotic effect of quercetin is associated with its ability to modulate NF-κB and TGF-β production. These results suggest that quercetin may be an effective therapeutic strategy in the treatment of patients with liver damage and fibrosis.
Resumo:
Sera from 299 fishermen 16 to 80 years old, residents in Cananeia and Iguape counties, southern cost of São Paulo State, Brazil, were studied in order to identify a possible association between the prevalence of specific antibodies to the hepatitis B virus (HBV) and exposure to haematophagus mosquitoes evaluated by the prevalence of arbovirus antibodies. This professional group presented the highest prevalence of arbovirus antibodies (54.1%) in past investigations carried out in this heavily forested region. Detection of antibody to hepatitis B core antigen (anti-HBc) in the sera was done by enzyme immunoassay (Roche). Prevalence of anti-HBc antibodies in this group was 31.4% (94/299) which is very high compared with 7.2% to 15.0% for different groups of healthy adults in State of São Paulo. No significant difference is observed between the prevalences of HBV antibodies in Iguape and Cananeia. Prevalence of anti-HBc and anti-arbovirus antibodies increases with age. There is a concordance in the distribution according to age groups of the frequency of anti-HBc and anti-arbovirus positive sera. Ag HBs was detected in 4% of the studied sera. These results support the hypothesis that the transmission of the hepatitis B virus and the arboviruses may be due to the same factor, one of the possibilities would be by anthropophilic mosquitoes.
Resumo:
The concern related to environment is growing. Due to this, it is needed to determine chemical elements in a large range of concentration. The neutron activation technique (NAA) determines the elemental composition by the measurement of artificial radioactivity in a sample that was submitted to a neutron flux. NAA is a sensitive and accurate technique with low detection limits. An example of application of NAA was the measurement of concentrations of rare earth elements (REE) in waste samples of phosphogypsum (PG) and cerrado soil samples (clayey and sandy soils). Additionally, a soil reference material of the International Atomic Energy Agency (IAEA) was also analyzed. The REE concentration in PG samples was two times higher than those found in national fertilizers, (total of 4,000 mg kg-1 ), 154 times greater than the values found in the sandy soil (26 mg kg-1 ) and 14 times greater than the in clayey soil (280 mg kg-1 ). The experimental results for the reference material were inside the uncertainty of the certified values pointing out the accuracy of the method (95%). The determination of La, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and Lu in the samples and reference material confirmed the versatility of the technique on REE determination in soil and phosphogypsum samples that are matrices for agricultural interest.
Resumo:
Nonobese diabetic (NOD) mice and a derived strain, NOD.H.2h4, have been used as a model for experimental spontaneous thyroiditis and thyroiditis induced by iodide excess after a goiter-inducing period. Some authors have proposed that iodide, given after methimazole or propylthiouracil, is capable of inducing apoptosis in thyroid cells and that anti-thyroid drugs can modulate the expression of apoptosis components such as Fas and its ligand (Fas-L). Here we evaluated the effect of potassium iodide (20 µg/animal for 4 days, ip) given to NOD mice at the 10th week of life after exposure to methimazole (1 mg/ml) in drinking water from the 4th to the 10th week of life. Fas, Fas-L and Bcl-w expression were analyzed semiquantitatively by RT-PCR immediately after potassium iodide administration (group MI44D) or at week 32 (MI32S). Control groups were added at 10 (C10) and 32 weeks (C32), as well as a group that received only methimazole (CM10). An increase in the expression of Fas-L and Bcl-w (P<0.01, ANOVA) was observed in animals of group MI44D, while Fas was expressed at higher levels (P = 0.02) in group C32 (72.89 ± 47.09 arbitrary units) when compared to group C10 (10.8 ± 8.55 arbitrary units). Thus, the analysis of Fas-L and Bcl-w expression in the MI44D group and Fas in group C32 allowed us to detect two different patterns of expression of these apoptosis components in thyroid tissue of NOD mice.
Resumo:
Cloning of the T-cell receptor genes is a critical step when generating T-cell receptor transgenic mice. Because T-cell receptor molecules are clonotypical, isolation of their genes requires reverse transcriptase-assisted PCR using primers specific for each different Valpha or Vß genes or by the screening of cDNA libraries generated from RNA obtained from each individual T-cell clone. Although feasible, these approaches are laborious and costly. The aim of the present study was to test the application of the non-palindromic adaptor-PCR method as an alternative to isolate the genes encoding the T-cell receptor of an antigen-specific T-cell hybridoma. For this purpose, we established hybridomas specific for trans-sialidase, an immunodominant Trypanosoma cruzi antigen. These T-cell hybridomas were characterized with regard to their ability to secrete interferon-gamma, IL-4, and IL-10 after stimulation with the antigen. A CD3+, CD4+, CD8- interferon-gamma-producing hybridoma was selected for the identification of the variable regions of the T-cell receptor by the non-palindromic adaptor-PCR method. Using this methodology, we were able to rapidly and efficiently determine the variable regions of both T-cell receptor chains. The results obtained by the non-palindromic adaptor-PCR method were confirmed by the isolation and sequencing of the complete cDNA genes and by the recognition with a specific antibody against the T-cell receptor variable ß chain. We conclude that the non-palindromic adaptor-PCR method can be a valuable tool for the identification of the T-cell receptor transcripts of T-cell hybridomas and may facilitate the generation of T-cell receptor transgenic mice.
Resumo:
The involvement of the hypothalamic-pituitary-adrenal axis in the control of body fluid homeostasis has been extensively investigated in the past few years. In the present study, we reviewed the recent results obtained using different approaches to investigate the effects of glucocorticoids on the mechanisms of oxytocin and vasopressin synthesis and secretion in response to acute and chronic plasma volume and osmolality changes. The data presented here suggest that glucocorticoids are not only involved in the mechanisms underlying the fast release but also in the transcriptional events that lead to decreased synthesis and secretion of these neuropeptides, particularly oxytocin, under diverse experimental conditions of altered fluid volume and tonicity. The endocannabinoid system, through its effects on glutamatergic neurotransmission within the hypothalamus and the nuclear factor κB-mediated transcriptional activity, seems to be also involved in the specific mechanisms by which glucocorticoids exert their central effects on neurohypophyseal hormone synthesis and secretion.
Resumo:
Our objective was to determine the immune-modulating effects of the neurotrophic factor N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP) on median nerve regeneration in rats. We used male Wistar rats (120-140 days of age, weighing 250-332 g) and compared the results of three different techniques of nerve repair: 1) epineural neurorrhaphy using sutures alone (group S - 10 rats), 2) epineural neurorrhaphy using sutures plus fibrin tissue adhesive (FTA; group SF - 20 rats), and 3) sutures plus FTA, with MDP added to the FTA (group SFM - 20 rats). Functional assessments using the grasp test were performed weekly for 12 weeks to identify recovery of flexor muscle function in the fingers secondary to median nerve regeneration. Histological analysis was also utilized. The total number and diameter of myelinated fibers were determined in each proximal and distal nerve segment. Two indices, reported as percentage, were calculated from these parameters, namely, the regeneration index and the diameter change index. By the 8th week, superiority of group SFM over group S became apparent in the grasping test (P = 0.005). By the 12th week, rats that had received MDP were superior in the grasping test compared to both group S (P < 0.001) and group SF (P = 0.001). Moreover, group SF was better in the grasping test than group S (P = 0.014). However, no significant differences between groups were identified by histological analysis. In the present study, rats that had received MDP obtained better function, in the absence of any significant histological differences.
Resumo:
Our objective was to determine lipid peroxidation and nuclear factor-κB (NF-κB) activation in skeletal muscle and the plasma cytokine profile following maximum progressive swimming. Adult male Swiss mice (N = 15) adapted to the aquatic environment were randomly divided into three groups: immediately after exercise (EX1), 3 h after exercise (EX2) and control. Animals from the exercising groups swam until exhaustion, with an initial workload of 2% of body mass attached to the tail. Control mice did not perform any exercise but were kept immersed in water for 20 min. Maximum swimming led to reactive oxygen species (ROS) generation in skeletal muscle, as indicated by increased thiobarbituric acid reactive species (TBARS) levels (4062.67 ±1487.10 vs 19,072.48 ± 8738.16 nmol malondialdehyde (MDA)/mg protein, control vs EX1). Exercise also promoted NF-κB activation in soleus muscle. Cytokine secretion following exercise was marked by increased plasma interleukin-6 (IL-6) levels 3 h post-exercise (P < 0.05). Interleukin-10 (IL-10) levels were reduced following exercise and remained reduced 3 h post-exercise (P < 0.05). Plasma levels of other cytokines investigated, monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and interleukin-12 (IL-12), were not altered by exercise. The present findings showed that maximum swimming, as well as other exercise models, led to lipid peroxidation and NF-κB activation in skeletal muscle and increased plasma IL-6 levels. The plasma cytokine response was also marked by reduced IL-10 levels. These results were attributed to exercise type and intensity.
Resumo:
The present study investigated the effect of silibinin, the principal potential anti-inflammatory flavonoid contained in silymarin, a mixture of flavonolignans extracted from Silybum marianum seeds, on palmitate-induced insulin resistance in C2C12 myotubes and its potential molecular mechanisms. Silibinin prevented the decrease of insulin-stimulated 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose) uptake and the downregulation of glutamate transporter type 4 (GLUT4) translocation in C2C12 myotubes induced by palmitate. Meanwhile, silibinin suppressed the palmitate-induced decrease of insulin-stimulated Akt Ser473 phosphorylation, which was reversed by wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K). We also found that palmitate downregulated insulin-stimulated Tyr632 phosphorylation of insulin receptor substrate 1 (IRS-1) and up-regulated IRS-1 Ser307 phosphorylation. These effects were rebalanced by silibinin. Considering several serine/threonine kinases reported to phosphorylate IRS-1 at Ser307, treatment with silibinin downregulated the phosphorylation of both c-Jun N-terminal kinase (JNK) and nuclear factor-κB kinase β (IKKβ), which was increased by palmitate in C2C12 myotubes mediating inflammatory status, whereas the phosphorylation of PKC-θ was not significantly modulated by silibinin. Collectively, the results indicated that silibinin prevented inhibition of the IRS-1/PI3K/Akt pathway, thus ameliorating palmitate-induced insulin resistance in C2C12 myotubes.