17 resultados para radar, multistatico, UWB, misure, sperimentali, localizzazione, telerilevamento


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A utilização de imagens de radar é fonte alternativa de informações para subsidiar o monitoramento da região amazônica, visto que as imagens ópticas têm limitações de imageamento em zonas tropicais face a ocorrência de nuvens. Por conseguinte este trabalho teve como objetivo analisar a capacidade das imagens-radar de banda X multitemporais e polarizadas obtidas pelo satélite COSMO-SkyMed (COnstellation of small Satellites for Mediterranean basin Observation), no modo intensidade, isoladamente e agregados às informações texturais, na caracterização temática de uso e cobertura da terra no município de Humaitá/AM. A metodologia empregada consistiu da: análise das imagens duais obtidas em duas aquisições subsequentes, de forma a explorar a potencialidade do conjunto de dados na forma quad-pol intensidade; extração dos atributos texturais a partir da matriz de coocorrência (Gray Level Co-occurrence Matrix) e posterior classificação contextual; avaliação estatística de desempenho temático das imagens intensidade e texturais, isoladas e em grupos polarizados. Dentre os vários resultados alcançados, foi verificado que o grupo formado somente pelas imagens intensidade apresentou o melhor desempenho, comparado àqueles contendo os atributos texturais. Nesta separabilidade, estavam envolvidas as classes de floresta, floresta aluvial, reflorestamento, savana, pasto e queimada, obtendo-se 66% de acurácia total e valor Kappa de 0,55. Os resultados mostraram que as imagens de banda X do COSMO-SkyMed, modo StripMap (Ping-Pong), multipolarizadas, têm potencial moderado para a caracterização e monitoramento da dinâmica de uso e cobertura da terra na Amazônia brasileira.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.