46 resultados para quantitative traits analysis
Resumo:
It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization) technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation) time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide). The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness
Resumo:
The cortical layer 1 contains mainly small interneurons, which have traditionally been classified according to their axonal morphology. The dendritic morphology of these cells, however, has received little attention and remains ill defined. Very little is known about how the dendritic morphology and spatial distribution of these cells may relate to functional neuronal properties. We used biocytin labeling and whole cell patch clamp recordings, associated with digital reconstruction and quantitative morphological analysis, to assess correlations between dendritic morphology, spatial distribution and membrane properties of rat layer 1 neurons. A total of 106 cells were recorded, labeled and subjected to morphological analysis. Based on the quantitative patterns of their dendritic arbor, cells were divided into four major morphotypes: horizontal, radial, ascendant, and descendant cells. Descendant cells exhibited a highly distinct spatial distribution in relation to other morphotypes, suggesting that they may have a distinct function in these cortical circuits. A significant difference was also found in the distribution of firing patterns between each morphotype and between the neuronal populations of each sublayer. Passive membrane properties were, however, statistically homogeneous among all subgroups. We speculate that the differences observed in active membrane properties might be related to differences in the synaptic input of specific types of afferent fibers and to differences in the computational roles of each morphotype in layer 1 circuits. Our findings provide new insights into dendritic morphology and neuronal spatial distribution in layer 1 circuits, indicating that variations in these properties may be correlated with distinct physiological functions.
Resumo:
The descriptive terminology and sensory prolife of four samples of Italian salami were determined using a methodology based on the Quantitative Descriptive Analysis (QDA). A sensory panel consensually defined sensory descriptors, their respective reference materials, and the descriptive evaluation ballot. Twelve individuals were selected as judges and properly trained. They used the following criteria: discriminating power, reproducibility, and individual consensus. Twelve descriptors were determined showing similarities and differences among the Italian salami samples. Each descriptor was evaluated using a 10 cm non-structured scale. The data were analyzed by ANOVA, Tukey test, and the Principal Component Analysis (PCA). The salami with coriander essential oil (T3) had lower rancid taste and rancid odor, whereas the control (T1) showed high values of these sensory attributes. Regarding brightness, T4 showed the best result. For the other attributes, T1, T2, T3, and T4 were similar.
Resumo:
The sensory quality of 'Douradão' peaches cold stored in three different conditions of controlled atmosphere (CA1, CA2, CA3 and Control) was studied. After 14, 21 and 28 days of cold storage, samples were withdrawn from CA and kept for 4 days in ambient air for ripening. The sensory profile of the peaches and the descriptive terminology were developed by methodology based on the Quantitative Descriptive Analysis (QDA). The panelists consensually defined the sensory descriptors, their respective reference materials and the descriptive evaluation ballot. Fourteen panelists were selected based on their discrimination capacity and reproducibility. Seven descriptors were generated showing similarities and differences between samples. The data were analyzed by ANOVA, Tukey test and Principal Component Analysis (PCA). Results showed significant differences in the sensory profiles of the peaches. The PCA showed that CA2 and CA3 treatments were more characterized by the fresh peach flavor, fresh peach appearance, juiciness and flesh firmness, and were effective in keeping the good quality of the 'Douradão' peaches during the 28 days of cold storage. The Control and CA1 treatments were characterized by the mealiness and were ineffective for quality maintenance of the fruits during cold storage.
Resumo:
The goal of this study was to evaluate the sensory profile of eleven peach cultivars grown in an experimental orchard located in the city of Lapa (PR, Brazil) in two seasons. The peach cultivars analyzed were Aurora I, Chimarrita, Chiripá, Coral, Eldorado, Granada, Leonense, Maciel, Marli, Premier, and Vanguarda. The sensory analysis was performed by previously trained panelists; 20 of them in the first season and 10 in the second season. The sensory evaluation was performed using Quantitative Descriptive Analysis, in which the following attributes were measured: appearance, aroma, flesh color, flesh firmness, flavor, and juiciness. The results showed preference for sweet, soft, and juicy fruits. Chimarrita, Chiripá, and Coral fruits showed better sensorial performance than the other peach cultivars. It was also verified that the analysis of the attributes aroma, flesh firmness, and flavor is enough for performing the sensory profile of peach fruits for in natura consumption.
Resumo:
The aim of this study was to reduce the fermentation time of pizza dough by evaluating the development of the dough during fermentation using a Chopin® rheofermentometer and verifying the influence of time and temperature using a 2² factorial design. The focus was to produce characteristic soft pizza dough with bubbles and crispy edges and soft in the center. These attributes were verified by the Quantitative Descriptive Analysis (QDA). The dough was prepared with the usual ingredients, fermented at a temperature range from 27 to 33 ºC for 30 to 42 minutes, enlarged, added with tomato sauce, baked, and frozen. The influence of the variables time and temperature on the release of carbon dioxide (H'm) was confirmed with positive and significant effect, using a rheofermentometer, which was not observed for the development or maximum height of the dough (Hm). The same fermentation conditions of the experimental design were used for the production of the pizza dough in the industrial process; it was submitted to Quantitative Descriptive Analysis (QDA), in which the samples were described by nine attributes. The results showed that some samples had the desired characteristics of pizza dough, demonstrated by the principal component analysis (PCA), indicating a 30 % fermentation time reduction when compared to the conventional process.
Resumo:
This study investigated the degradation kinetics of the sensory attributes of commercial whole mango (cv. Ubá) juice and evaluated its sensory acceptability during storage. Samples of the product were stored in a BOD incubator at 25, 35, and 45 ºC under 24 hours light (650 lux) for 120 days. Sensory analyses (Quantitative Descriptive Analysis - QDA) were conducted with trained panel and consumers. The correlations between sensory and physicochemical characteristics (instrumental color and vitamin C content) were also assessed. Flavor, aroma, and color vary with temperature and time of storage. Aroma and flavor were most affected by temperature with values of Q10 and Ea equal to 4.16 and 25.31 kcal.mol-1; and 3.61 and 22.80 kcal.mol-1, respectively. The sensory changes observed by the trained panel are related to the degradation of vitamin C and changes in the color coordinates (L* and ΔE*) of mango juice. However, consumers were unable to detect changes in the overall quality of the juices. It was observed that the QDA can be a useful tool to assess shelf-life.
Resumo:
The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.
Resumo:
Decreased gustatory and olfactory capacity is one of the problems caused by tobacco use. The objectives of this study were to determine the sensory profile of six grape nectar samples sweetened with different sweeteners and to verify the drivers of liking in two distinct consumer groups: smokers and nonsmokers. The sensory profile was constructed by twelve trained panelists using quantitative descriptive analysis (QDA). Consumer tests were performed with 112 smokers and 112 nonsmokers. Partial least squares regression analyses was used to identify the drivers of acceptance and rejection of the grape nectars among the two consumer groups. According to the QDA, the samples differed regarding six of the nineteen attributes generated. The absolute averages of the affective test were lower in the group of smokers; possibly because smoking influences acceptance and eating preferences, especially with regard to sweet foods. The results showed that the grape flavor was the major driver of preference for acceptance of the nectar, while astringency, wine aroma, bitterness and sweetness, and bitter aftertaste were drivers of rejection in the two groups of consumers, with some differences between the groups.
Resumo:
The odor and taste profile of cocoa bean samples obtained from trees cultivated in southern Mexico were evaluated by trained panelists. Seven representative samples (groups) of a total of 45 were analyzed. Four attributes of taste (sweetness, bitterness, acidity and astringency), and nine of odor (chocolate, nutty, hazelnut, sweet, acidity, roasted, spicy, musty and off-odor) were evaluated. A sample (G7) with higher scores in sweet taste and sweet and nutty odors was detected, as well as a high association between these descriptors and the sample, analyzed through principal component analysis (PCA). Similarly, samples that showed high scores for non-desired odors in cocoas such as off-odor and musty were identified and related by PCA to roasted odor and astringent taste (G2 and G4). Based on this scores, the samples were listed in descending order by their sensory quality as G7> G5> G6> G3> G1> G4> G2.
Resumo:
ABSTRACT The objective of this study was to analyze the phenotypic correlation and path analysis of traits related to plant architecture, earliness and grain yield in F2, BC1 and BC2 generations, from crosses between cowpea cultivars BRS Carijó and BR14 Mulato. Most phenotypic correlations of the examined traits were concordant in statistical significance, with approximate values among the examined generations. For the trait seed weight, significant and positive phenotypic correlations were observed in the three generations only for the trait number of secondary branches. The values of the direct effects were in agreement with the values of the phenotypic correlations, which indicate true association by the phenotypic correlation among the traits of grain yield examined. Path analysis indicated that the selection of productive plants will result in early plants and an increased number of secondary branches. In F2, plants with shorter length of the main branch and shorter length of secondary branches can be obtained. The causal model explained 15 to 30% of the total variation in grain weight in relation to the traits examined. The analyses indicated the possibility of selecting plants with a higher and early grain yield, shorter length of primary branches and lower number of nodes, which are important variables for mechanical or semi-mechanical harvesting.
Resumo:
Lesions observed in chronic chagasic cardiopathy frequently produce electrocardiographic alterations and affect cardiac function. Through a computerized morphometrical analysis we quantified the areas occupied by cardiac muscle, connective and adipose tissues in the right atrium of dogs experimentally infected with Trypanosoma cruzi. All of the infected dogs showed chronic myocarditis with variable reduction levels of cardiac muscle, fibrosis and adipose tissue replacement. In the atrial myocardium of dogs infected with Be78 and Be62 cardiac muscle represented 34 and 50%, fibrosis 28 and 32% and adipose tissue 38 and 18%, respectively. The fibrosis observed was both diffuse and focal and mostly intrafascicular, either partially or completely interrupting the path of muscle bundles. Such histological alterations probably contributed to the appearance of electrocardiographic disturbances verified in 10 out 11 dogs which are also common in human chronic chagasic cardiopathy. Fibrosis was the most important microscopic occurrence found since it produces rearrangements of collagen fibers in relation to myocardiocytes which causes changes in anatomical physiognomy and mechanical behavior of the myocardium. These abnormalities can contribute to the appearance of cardiac malfunction, arrythmias and congestive cardiac insufficiency as observed in two of the analyzed dogs. Strain Be78 caused destruction of atrial cardiac muscle higher than that induced by strain Be62.
Resumo:
PURPOSE: Our previous studies demonstrated structural and quantitative age-related changes of the elastic fibers in transversalis fascia, which may play a role in inguinal hernia formation. To verify whether there were differences in the extracellular matrix between direct and indirect inguinal hernia, we studied the amount of collagen and elastic fibers in the transversalis fascia of 36 male patients with indirect inguinal hernia and 21 with direct inguinal hernia. MATERIAL AND METHODS: Transversalis fascia fragments were obtained during surgical intervention and underwent histological quantitative analysis of collagen by colorimetry and analysis of elastic fibers by histomorphometry. RESULTS: We demonstrated significantly lower amounts of collagen and higher amounts of elastic fibers in transversalis fascia from patients with direct inguinal hernia compared to indirect inguinal hernia patients. The transversalis fascia from direct inguinal hernia patients showed structural changes of the mature and elaunin elastic fibers, which are responsible for elasticity, and lower density of oxytalan elastic fibers, which are responsible for resistance. These changes promoted loss of resiliency of the transversalis fascia. CONCLUSION: These results improve our understanding of the participation of the extracellular matrix in the genesis of direct inguinal hernia, suggesting a relationship with genetic defects of the elastic fiber and collagen synthesis.
Resumo:
Biological studies are necessary for the management of wildlife in captivity, and knowledge of reproduction is one of the important features for increasing production. The objective of the research was to determine the age at which male collared peccaries reach puberty. Testicular samples of 15 animals, aged 7 to 16 months, distributed into five groups (G1, G2, G3, G4 and G5) were used. The testes showed considerably increased weight, length and width (p < 0.05) from G1 to G3, whereas, from this group onward, the development of this organ was slower. There was positive correlation (p < 0.001) between the following testicular parameters: weight and length (r = 0.97), weight and width (r = 0.88), length and width (r = 0.92). Regarding the diameter of seminiferous tubules, an increase was observed (p < 0.05) from G1 to G4. The total number of spermatogenic cells increased significantly (p < 0.05) until G3 and then it stabilized. There was also positive correlation between testis weight and tubular diameter (r = 0.99, p < 0.001), and testis weight and spermatogenic cells (r = 0.98, p < 0.001). The number of Sertoli cells decreased significantly (p < 0.05) from G1, when they were undifferentiated as support cells, to G5, when they occurred together with the complete line of spermatic cells. The results demonstrate that the reproductive development of peccaries can be classified into the following stages: impuberty (G1, 7-8 months); pre-pubertal (G2, 9-10 months); pubertal (G3, 11-12 months); post-pubertal 1 (G4, 13-14 months); and post-pubertal 2 (G5, 15-16 months). Based on the histological analyses, puberty in the male collared peccary was determined to occur between 11 and 12 months of age.