88 resultados para pulp drying
Resumo:
Gelled aspect in papaya fruit is typically confused with premature ripening. This research reports the characterization of this physiological disorder in the pulp of papaya fruit by measuring electrolyte leakage, Pi content, lipid peroxidation, pulp firmness, mineral contents (Ca, Mg and K - in pulp and seed tissues), and histological analysis of pulp tissue. The results showed that the gelled aspect of the papaya fruit pulp is not associated with tissue premature ripening. Data indicate a reduction of the vacuole water intake as the principal cause of the loss of cellular turgor; while the waterlogged aspect of the tissue may be due to water accumulation in the apoplast.
Resumo:
The caja (Spondias mombin L.) is used in the manufacture of ice-cream, jams, pulps, beverages being also consumed in natura. One of the most important procedures in food conservation is drying, considering that most fresh fruits contain approximately 80% of water. Food drying is used to obtain two basic aspects: (1) the economic factor; in the shipping and handling of the product; (2) at the manipulation; once dried and grinded, the material is rehydrated, at desirable levels, to formulate a new product as in ice cream, jams, yoghurts and drinks and may also be added to pasta, biscuits and other industrialized products. The aim of this study was to investigate the kinetics of caja bagasse drying in a fixed-bed tray dryer, using central composite factorial planning. The following factors were evaluated: temperature (55, 65 and 75 ºC), dryer inlet air velocity (3.2, 4.6 and 6.0 m.s-1) and cake thickness (0.8, 1.2 and 1.6 cm) where the response of the considered variable was caja bagasse moisture content (b.s.) and the results showed that the main effects and their interactions were significant at a 95% confidence level being the best condition obtained at temperature of 75 ºC, velocity of 6.0 m.s-1 and cake thickness of 0.8 cm.
Resumo:
This study evaluated the chemical composition of peeled and unpeeled green banana Cavendish (AAA) flour obtained by drying in spouted bed, aiming at adding nutritional value to food products. The bananas were sliced and crushed to obtain a paste and fed to the spouted bed dryer (12 cm height and T = 80 ºC) in order to obtain flour. The flours obtained were subjected to analysis of moisture, protein, ash, carbohydrates, total starch, resistant starch, fiber. The green banana flours, mainly unpeeled, are good sources of fiber and resistant starch with an average of 21.91g/100g and 68.02g/100g respectively. The protein content was found in an average of 4.76g/100g, being classified as a low biological value protein with lysine as the first limiting amino acid. The results showed that unpeeled green banana flour obtained by spouted bed drying can be a valuable tool to add nutritional value to products in order to increase their non-digestible fraction.
Resumo:
In this work, a new adsorbent was prepared by microencapsulation of sulfoxine into chitosan microspheres by the spray drying technique. The new adsorbent was characterized by Raman spectroscopy, scanning electron microscopy and microanalysis of energy dispersive X-rays. The Cu(II) adsorption was studied as a function of pH, time and concentration. The optimum pH was found to be 6.0. The kinetic and equilibrium data showed that the adsorption process followed the pseudo second-order kinetic model and the Langmuir isotherm model over the entire concentration range. An increase of 8.0% in the maximum adsorption capacity of the adsorbent (53.8 mg g-1) was observed as compared to chitosan glutaraldehyde cross-linked microspheres.
Resumo:
Our previous paper showed fragmentary evidence that pulp brightness reversion may be negatively affected by its organically bound chlorine (OX) content. A thorough investigation on eucalyptus kraft pulp led to the conclusion that OX increases reversion of certain pulps but this trend is not universal. Alkaline bleaching stages decrease reversion regardless of pulp OX content. Pulps bleached with high temperature chlorine dioxide revert less than those bleached with conventional chlorine dioxide in sequences ending with a chlorine dioxide stage but similarly in sequences ending with a final peroxide stage. The use of secondary condensate for pulp washing decreases reversion.
Resumo:
Biosensors based on laccase immobilized on microparticles of chitosan crosslinked with tripolyphosphate (biosensor I) and glyoxal (biosensor II) obtained by spray drying for the determinations of rutin in pharmaceutical formulations were developed. Under optimized operational conditions (pH 4.0, frequency of 30 Hz, pulse amplitude of 40 mV and scan increment of 2.0 mV) two analytical curves were obtained for both biosensors showing a detection limit of 6.2x10-8 mol L-1 for biosensor (I) and 2.0x10-8 mol L-1 for biosensor (II). The recovery of rutin from pharmaceutical sample ranged from 90.7 to 105.0% and the lifetime of these biosensors were 4 months (at least 400 determinations).
Resumo:
Pequi (Caryocar brasiliense Camb.), a typical fruit of Brazilian Cerrado, is well known in regional cookery and used in folk medicine to treat various illnesses. Mass spectrometry and chromatographic methods have identified the organic composition of pequi fruit pulp; however, NMR spectroscopy is used for the first time to characterize the nutritional components of organic and aqueous-ethanolic extracts. This spectroscopic technique determined the triacylglycerols in the pequi organic fraction, which is constituted mainly by oleate and palmitate esters, and detected the carbohydrate mixtures as the major components of aqueous and ethanolic fractions, respectively. In this study, presence of phenolic compounds was only evidenced in the ethanolic fraction.
Resumo:
Despite the availability of alternative methods for drying tetrahydrofuran (THF), the use of the still apparatus, wherein a THF solution containing Na-bezophenone ketyl is heated to reflux, remains widespread. We herein propose a set of procedures to solve the problems usually faced in applying this drying technique. Moreover, a discussion is made on the chemical knowledge underlying such procedures. Safety and economy issues concerned with the operation of the THF still apparatus are also discussed.
Resumo:
The aim of this study was to encapsulate curcumin into chitosan, using sodium tripolyphosphate (TPP) as an ionic crosslinker by the spray drying method. The influence of TPP on the properties of the final product, such as solubility, morphology, loading efficiency, thermal behavior, swelling degree and release profiles, was evaluated. The microparticles had a spherical morphology (0.5-20 µm) with no apparent porosity or cracks. Results indicated the formation of a polymeric network, which ensures effective protection for curcumin. Controlled-release studies were carried out at pH 1.2 and 6.8, to observe the influence of pH on curcumin release while the mechanism was analyzed using the Korsmeyer-Peppas equation.
Resumo:
It is well known that pH is an important parameter for controlling the eucalyptus pulp bleaching when using the final chlorine dioxide stage, since it affects the effectiveness of the process. Recommendations found in the literature for operating are in the 3.5 to 4.0 range. However, in this paper it was shown that final chlorine dioxide has better performance, with significant brightness gain while also preserving pulp quality, when it is operated at near neutral pH. This result can be explained by the generation of sodium bicarbonate in situ upon adding carbon dioxide at this stage.
Resumo:
AbstractIn this study, the spray drying technique was used to prepare L-ascorbic acid (AA) microparticles encapsulated with galactomannan-an extract from the seeds of the Delonix regia species. The physico-chemical characteristics, antioxidant activity, and encapsulation efficiency of the AA microparticles were evaluated and characterized using thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The free-radical scavenging activity of the AA microparticles was determined at different environmental conditions using DPPH (1,1-diphenyl-2-picryl-hydrazyl). X-ray diffraction measurements demonstrated a loss of crystallinity in AA after the encapsulation process, and a DSC scan also showed the loss of the compound's melting peak. Thermogravimetric analysis showed small differences in the thermal stability of galactomannan before and after the incorporation of AA. The mean diameters of the obtained spherical microspheres were in the range of 1.39 ± 0.77 µm. The encapsulation efficiency of AA microparticles in different environmental conditions varied from 95.40 to 97.92, and the antioxidant activity showed values ranging from 0.487 to 0.550 mg mL-1.
Resumo:
The use of 12-year-old Pinus tecunumanii (Eguiluz e Perry) grown in Colombia was evaluated for bleached kraft pulp production. Kraft pulps of kappa number 30 ± 1 were produced, and oxygen delignified and bleached to 90% ISO with ECF processes. The bleached pulps produced under optimum conditions were evaluated with regard to their strength properties. Pinus tecunumanii wood required low effective alkali charge to reach the desired kappa number and the unbleached pulp showed high oxygen delignification efficiency and bleachability when a OD(EO)DED sequence was used. The bleached pulps presented good physical-mechanical properties, which are comparable to those obtained with more traditional pines such as Pinus taeda and Pinus radiata. The results demonstrate that this tropical pine species is a suitable raw material for bleached kraft pulp production
Resumo:
One hundred different 5.5-year-old Eucalyptus grandis x Eucalyptus urophylla wood clones were cooked to kappa number 15-17.5 and the resulting kraft pulps oxygen-delignified to kappa 9.5-11.5 under fixed conditions, except for chemical charges. Thirteen samples showing large variations in effective alkali requirement, pulp yield and O-stage efficiency and selectivity were selected for brightness reversion studies. These samples were bleached to 90-91% ISO by DEDD and DEDP sequences and their brightness stability and chemical characteristics determined. Heat reversion of the eucalyptus kraft pulps was strongly influenced by the wood supply, with brightness loss varying in the range of 2.1-3.6 and 0.8-1.7 %ISO for ODEDD and ODEDP bleached pulps, respectively. Pulps bleached by the ODEDP sequence showed reversion values 1.3-1.9 % ISO lower than those bleached by the ODEDD sequence. Pulp carbonyl content decreased by 35-40% during the final peroxide bleaching stage. Carbonyl and carboxyl groups correlated positively with brightness reversion, as did permanganate number and acid soluble lignin. Pulp final viscosity and metal and DCM extractives contents showed no significant correlation with brightness reversion. Pulping, oxygen delignification and ECF bleaching performances also showed no correlation with brightness reversion.
Resumo:
It is important to develop drying technologies for Eucalyptus grandis lumber, which is one of the most planted species of this genus in Brazil and plays an important role as raw material for the wood industry. The general aim of this work was to assess the conventional kiln drying of juvenile wood of three clones of Eucalyptus grandis. The specific aims were to compare the behavior between: i) drying defects indicated by tests with wood specimens and conventional kiln-dried boards; and ii) physical properties and the drying quality. Five 11-year-old trees of each clone were felled, and only flatsawn boards of the first log were used. Basic density and total shrinkage were determined, and the drying test with wood specimens at 100 °C was carried out. Kiln drying of boards was performed, and initial and final moisture content, moisture gradient in thickness, drying stresses and drying defects were assessed. The defect scoring method was used to verify the behavior between the defects detected by specimen testing and the defects detected in kiln-dried boards. As main results, the drying schedule was too severe for the wood, resulting in a high level of boards with defects. The behavior between the defects in the drying test with specimens and the defects of kiln-dried boards was different, there was no correspondence, according to the defect scoring method.
Resumo:
The present study aimed to determine the volumetric shrinkage rate of bean (Phaseolus vulgaris L.) seeds during air-drying under different conditions of air, temperature and relative humidity, and to adjust several mathematical models to the empiric values observed, and select the one that best represents the phenomenon. Six mathematical models were adjusted to the experimental values to represent the phenomenon. It was determined the degree of adjustment of each model from the value of the coefficient of determination, the behavior of the distribution of the residuals, and the magnitude of the average relative and estimated errors. The rate of volumetric shrinkage that occurred in bean seeds during drying is between 25 and 37%. It basically depends on the final moisture content, regardless of the air conditions during drying. The Modified Bala & Woods' model best represented the process.