161 resultados para properties of neutron stars
Resumo:
The latex of Euphorbia splendens var. hislopii, at concentrations between 5 to 12 mg/l, kills 100% of the population of Biomphalaria glabrata in a lentic habitat, after 24 h. The lyophilized latex, stocked for 18 months, killed only 34.2% of the snails, at the concentration of 5 mg/l, and 96.0% at 12 mg/l. No lethal effect was observed among Pomacea haustrum exposed to the same concentrations of the molluscicide.
Resumo:
Human amniotic interferon was investigated to define the species specificity of its antiviral action and compare its anti-cellular and NK cell stimulating activities with those of other human interferons. The antiviral effect was titrated in bovine (RV-IAL) and monkey (VERO) cells. Amniotic interferon exhibited, in bovine cells, 5% of the activity seen in monkey cells, while alpha interferon displayed 200%. No effect was detected with either beta or gamma interferon in bovine cells. Daudi cells were exposed to different concentrations of various interferons and the cell numbers were determined. The anticellular effect of the amniotic interferon reached its peak on the third day of incubation. Results suggested a higher activity for alpha and gamma interferons and a lower activity for beta when compared to amniotic interferon. Using total mononuclear cells as effector cells and K 562 as target cell in a 51Cr release assay, it was demonstrated that low concentrations of amniotic interferon consistently stimulated NK cell activity in cells derived from several donors, the results indicating a higher level of activity with this interferon than with alpha and beta interferons.
Resumo:
Extracellular proteins produced by Bacillus cereus AL-42 and AL-15 were fractioned by chromatography on QAE-Sephadex and Sephadex G75. This last chromatographic process resulted in three peaks. The major peak showed vascular permeability activity to rabbits, lethality to mice, and cytotoxicity to Vero and Hela cells. The analysis by SDS-PAGE after ultrafiltration confirm recent findings that the enterotoxin is a compound with molecular mass > 30.000.
Resumo:
In this work we have studied the modifications in the biological properties of Trypanosoma cruzi when the parasite is maintained for a long time in axenic culture. The studies were done with a clone from an avirulent strain (Dm30L) and a non-cloned virulent strain (EP) of T. cruzi. Both parasiteswere maintained, for at least three years, by successive triatomine/mouse alternate passage (control condition), or by serial passage in axenic medium (culture condition), or only in the mouse (mouse condition). The comparison between parasites of culture and control condition showed that metacyclogenesis capacity was reduced in the former and that the resulting metacyclics displayed an attenuatedvirulence. In order to compare the virulence of metacyclics from the urine of the insect vector, Rhodnius prolixus were infected by artificial feeding with parasites of the control or culture condition. After three triatomine/triatomine passages, there was observed an almost identical biological behavior for these parasites, hence indicating that the maintenance of T. cruzi for a long time in axenic culture affects the differentiation capacity and the virulence of the parasite. Additionally, it was demonstrated that it is possible to maintain T. cruzi exclusively through passages in the invertebrate host.
Resumo:
Following the positive results obtained regarding the molluscicidal properties of the latex of Euphorbia splendens that were corroborated in laboratory and field tests under restricted conditions, a field study was conducted in experimental streams located in an endemic area. After recording the average annual fluctuations of vectors in three streams, a solution of E. splendens latex at 12 ppm was applied in stream A, a solution of niclosamide at 3 ppm that was applied in stream B and a third stream (C) remained untreated for negative control. Applications of E. splendens and niclosamide resulted in a mortality of 100% among the snails collected in the streams A and B. No dead snails were found in the negative control stream. A monthly follow-up survey conducted during three consecutive months confirmed the return of vectors to both experimental streams treated with latex and niclosamide. This fact has called for a need to repeat application in order to reach the snails that remained buried in the mud substrate or escaped to the water edge, as well as, newly hatched snails that did not respond to the concentration of these molluscicides. Adults snails collected a month following treatment led us to believe that they had migrate from untreated areas of the streams to those previously treated
Resumo:
ß-lactamase activity was studied in Neisseria gonorrhoeae strains. Optimum temperature was found to be 37°C. The enzyme was inactivated at temperatures higher than 60°C, but remained active during storage at low temperatures (4°C, -30°C and -70°C) for two months. Enzyme activity was observed within a pH range of 5.8-8.0, while the optimum pH was 7.0-7.2. Addition of Ni2+, Fe2+, Fe3+, Mn2+ and p-chloromercurybenzoate to the reaction buffer exerted a negative effect upon the activity, whereas Hg2+ and ethylene diamine tetra-acetic acid produced complete inhibition. These results would indicate the presence of -SH groups at the catalytic site of the enzyme.
Resumo:
The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis) were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals) and -29.3 mV (cells from adult animals). The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5°and 40.8°, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis.
Resumo:
A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP)-expressing Plasmodium bergheistrain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3) inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.
Resumo:
Soil tillage promotes changes in soil structure. The magnitude of the changes varies with the nature of the soil, tillage system and soil water content and decreases over time after tillage. The objective of this study was to evaluate short-term (one year period) and long-term (nine year period) effects of soil tillage and nutrient sources on some physical properties of a very clayey Hapludox. Five tillage systems were evaluated: no-till (NT), chisel plow + one secondary disking (CP), primary + two (secondary) diskings (CT), CT with burning of crop residues (CTb), and CT with removal of crop residues from the field (CTr), in combination with five nutrient sources: control without nutrient application (C); mineral fertilizers, according to technical recommendations for each crop (MF); 5 Mg ha-1 yr-1 of poultry litter (wetmatter) (PL); 60 m³ ha-1 yr-1 of cattle slurry (CS) and; 40 m³ ha-1 yr-1 of swine slurry (SS). Bulk density (BD), total porosity (TP), and parameters related to the water retention curve (macroporosity, mesoporosity and microporosity) were determined after nine years and at five sampling dates during the tenth year of the experiment. Soil physical properties were tillage and time-dependent. Tilled treatments increased total porosity and macroporosity, and reduced bulk density in the surface layer (0.00-0.05 m), but this effect decreased over time after tillage operations due to natural soil reconsolidation, since no external stress was applied in this period. Changes in pore size distribution were more pronounced in larger and medium pore diameter classes. The bulk density was greatest in intermediate layers in all tillage treatments (0.05-0.10 and 0.12-0.17 m) and decreased down to the deepest layer (0.27-0.32 m), indicating a more compacted layer around 0.05-0.20 m. Nutrient sources did not significantly affect soil physical and hydraulic properties studied.
Resumo:
No tillage systems significantly influence the soil system, but knowledge about the effects on the mineralogy of tropical and subtropical soils is limited. This study evaluated the long-term effects (26 years) of no-tillage (NT) on aluminum hydroxy-interlayered minerals of a subtropical Oxisol in Southern Brazil (Guarapuava, PR), compared to the same soil under conventional tillage (CT). The clay fraction (< 2 µm) in soil samples of the surface horizons of a field experiment under both management systems was analyzed by X-ray diffraction (XRD) to identify and characterize Al hydroxy-interlayered minerals before and after treatment with sodium citrate to remove intra-layer material. Soil liquid (solution) and solid phases were also characterized. The contents of total organic C, exchangeable cations, P, and the values of extractable acidity and cation exchange capacity as well as electrical conductivity and levels of dissolved organic C, basic cations, aluminum, Si, and sulfur in the soil solution were higher in the NT soil. Under both soil management systems, more than 90 % of the total soluble Al was complexed with organic compounds, with similar Al activity. No significant changes were detected by 2:1 clay mineral XRD analyses in terms of extension or intercalation of Al-hydroxy-polymers in the no-tilled in comparison to the conventionally tilled soil. In both soil management systems, Al and Si activities in the soil solution indicated thermodynamic stability of 2:1 clay minerals with partially occupied by hydroxy-Al, suggesting deceleration in the intercalation process and a tendency of transforming clay minerals from extensive into partial intercalation.
Resumo:
Soil is the basis underlying the food production chain and it is fundamental to improve and conserve its productive capacity. Imbalanced exploitation can degrade agricultural areas physical, chemical and biologically. The objective of this study was to evaluate some soil physical properties and their relation with organic carbon contents of a Humic Dystrudept under conventional tillage (CT) and no-tillage (NT), for 12 years in rotation (r) and succession (s) cropping systems. The experiment was carried out in Lages, SC (latitude 27 º 49 ' S and longitude 50 º 20 ' W, 937 m asl), using crop sequences of bean-fallow-maize-fallow-soybean in conventional tillage rotation; maize-fallow in conventional tillage succession; bean-oat-maize-turnip-soybean-vetch in no-tillage rotation; and maize-vetch in no-tillage succession. The experimental design was completely randomized with four replications. The soil samples were collected in the layers 0-2.5, 2.5-5, 5-10, and 10-20 cm. The following properties were analyzed: soil density, porosity, aggregate stability, degree of flocculation, water retention, infiltration, mechanical strength, and total organic carbon. Soil aggregation in the surface layer (0-5 cm) was better in the no-tillage than the conventional system, related to higher microporosity, organic carbon contents and water retention capacity, indicating that a periodical tillage of this soil is unnecessary. Infiltration was highest in no-tillage with crop succession.
Resumo:
Obtaining information about soil properties under different agricultural uses to plan soil management is very important with a view to sustainability in the different agricultural systems. The aim of this study was to evaluate changes in certain indicators of the physical quality of a dystrophic Red Latosol (Oxisol) under different agricultural uses. The study was conducted in an agricultural area located in northern Paraná State. Dystrophic Red Latosol samples were taken from four sites featuring different types of land use typical of the region: pasture of Brachiaria decumbens (P); sugarcane (CN); annual crops under no-tillage (CAPD); and native forest (permanent conservation area) (control (C)). For each land use, 20 completely randomized, disturbed and undisturbed soil samples were collected from the 0-20 cm soil layer, to determine soil texture, volume of water-dispersible clay, soil flocculation (FD), particle density, quantity of organic matter (OM), soil bulk density (Ds), soil macroporosity (Ma) and microporosity (Mi), total soil porosity (TSP), mean geometric diameter of soil aggregates (MGD), and penetration resistance (PR). The results showed differences in OM, FD, MGD, Ds, PR, and Ma between the control (soil under forest) and the areas used for agriculture (P, CN and CAPD). The soils of the lowest physical quality were those used for CN and CAPD, although only the former presented a Ma level very close to that representing unfavorable conditions for plant growth. For the purposes of this study, the physical properties studied were found to perform well as indicators of soil quality.
Resumo:
Due to human activity, large amounts of organic residue are generated daily. Therefore, an adequate use in agricultural activities requires the characterization of the main properties. The chemical and physical characterization is important when planning the use and management of organic residue. In this study, chemical and physical properties of charcoal, coffee husk, pine-bark, cattle manure, chicken manure, coconut fiber, sewage sludge, peat, and vermiculite were determined. The following properties were analyzed: N-NH4+, N-N0(3)-, and total concentrations of N, P, S, K, Ca, Mg, Mn, Zn, Cu, and B, as well as pH, Electrical Conductivity (EC) and bulk density. Coffee husk, sewage sludge, chicken manure and cattle manure were generally richer in nutrients. The EC values of these residues were also the highest (0.08 - 40.6 dS m-1). Peat and sewage sludge had the highest bulky density. Sodium contents varied from 0 to 4.75 g kg-1, with the highest levels in chicken manure, cattle manure and sewage sludge. Great care must be taken when establishing proportions of organic residues in the production of substrates with coffee husk, cattle or chicken manure or sewage sludge in the calculation of the applied fertilizer quantity in crop fertilization programs.
Resumo:
This study had the purpose of evaluating the effects of two management types of sugarcane: harvesting of burnt cane (BCH) and mechanized harvesting of unburnt green cane (MCH), on some soil physical properties of a dystrophic Rhodic Haplustox. The data were then compared with results for the same soil type under native forest. A completely randomized design was used, with three treatments and 20 replications. The following characteristics were determined: organic matter, aggregate stability, soil bulk density, and porosity at depths of 0-0.20 m and soil penetration resistance. After 15 years of cultivation, there were some alterations in the soil under cane burnt before harvesting, evidenced by a drop in the weighted average diameter of stable aggregates in water and increased soil bulk density. Significant changes were also detected in total porosity and pore distribution under both harvesting systems. Critical values for penetration resistance were observed in the area under mechanized sugar cane harvesting, with a value of 4.5 MPa in the 40-55 cm layer. This value is considered high and could indicate compaction and restriction of root growth. Soil properties under the green cane (unburned) management system were closest to those of the soil under native forest.
Resumo:
The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.