35 resultados para prodrug pharmacokinetics
Resumo:
Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 >> 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies.
Resumo:
Plasmodium vivax is the most widespread parasite causing malaria, being especially prevalent in the Americas and Southeast Asia. Children are one of the most affected populations, especially in highly endemic areas. However, there are few studies evaluating the therapeutic response of infants with vivax malaria. This study retrospectively evaluated the parasitaemia clearance in children diagnosed with vivax malaria during the first five days of exclusive treatment with chloroquine (CQ). Infants aged less than six months old had a significantly slower parasitaemia clearance time compared to the group of infants and children between six months and 12 years old (Kaplan-Meier survival analysis; Wilcoxon test; p = 0.004). The impaired clearance of parasitaemia in younger children with vivax malaria is shown for the first time in Latin America. It is speculated that CQ pharmacokinetics in young children with vivax malaria is distinct, but this specific population may also allow the detection of CQ-resistant parasites during follow-up, due to the lack of previous immunity.
Resumo:
Pharmacological treatment of Chagas disease with benznidazole (BNZ) is effective in children in all stages, but it is controversial in chronically infected adults. We report the pharmacokinetics and pharmacodynamics in six adult patients with Chagas disease treated with the new BNZ formulation (ABARAX®) in doses between 2.5-5.5 mg/Kg/day. All but one patient had plasmatic BNZ concentrations within the expected range. All patients finalised treatment with nondetectable Trypanosoma cruziquantitative polymerase chain reaction, which remained nondetectable at the six month follow-up. Our data suggests parasitological responses with the new BNZ and supports the hypothesis that treatment protocols with lower BNZ doses may be effective.
Resumo:
Short review about the main aspects of prodrug design, as its objectives, applicability and importance, showing the new trends in the research for selective latent forms, namely targeted drugs.
Resumo:
Drug therapy involving bone tissue diseases is difficult, calling for the design of specific drugs. The present paper is a brief review of a new site-directed system termed ODDS (osteotropic drug delivery system), based on a latenciation process, using bisphosphonates as bone carriers. This is an important tool for the rational prodrug design for obtaining selective drugs.
Resumo:
A new solid phase microextraction (SPME) system, known as in-tube SPME, was recently developed using an open tubular fused-silica capilary column, instead of an SPME fiber, as the SPME device. On-line in-tube SPME is usually used in combination with high performance liquid chromatography. Drugs in biological samples are directly extracted and concentrated in the stationary phase of capillary columns by repeated draw/eject cycles of sample solution, and then directly transferred to the liquid chromatographic column. In-tube SPME is suitable for automation. Automated sample handling procedures not only shorten the total analysis time, but also usually provide better accuracy and precision relative to manual techniques. In-tube SPME has been demonstrated to be a very effective and highly sensitive technique to determine drugs in biological samples for various purposes such as therapeutic drug monitoring, clinical toxicology, bioavailability and pharmacokinetics.
Resumo:
Strategies that promote selective activation of prodrugs by enzymes can be divided into two major classes: 1) deliver of a monoclonal antibody-enzyme immunoconjugate that can recognize a specific antigen and promote the prodrug to a citotoxic drug, with a high selectivity for the target cells, and 2) selective gene delivery encoding an enzyme that can promote the prodrug to a citotoxic drug for the target cells. In this article are discussed ADEPT (antibody-directed enzyme prodrug therapy), GDEPT (gene-directed enzyme prodrug therapy), VDEPT (virus-directed enzyme prodrug therapy), GPAT (genetic prodrug activation therapy) and PDEPT (polymer-directed enzyme prodrug therapy) approaches, their clinical trials, advantages, disadvantages and perspectives.
Resumo:
A rapid HPLC analytical method was developed and validated for the determination of the N-phenylpiperazine derivative LASSBio-579in plasma rat. Analyses were performed using a C18 column and elution with 20 mM sodium dihydrogen phosphate monohydrate - methanol. The analyte was monitored using a photodiode array detector (257 nm). Calibration curves in spiked plasma were linear over the concentration range of 0.3-8 mg/mL with determination coefficient > 0.99. The lower limit of quantification was 0.3 mg/mL. The applicability of the HPLC method for pharmacokinetic studies was tested using plasma samples obtained after administration of LASSBio-579 to Wistar rats, showing the specificity of the method.
Resumo:
Hydroxymethylnitrofurazone (NFOH) is a prodrug that is active against Trypanosoma cruzi. It however presents low solubility and high toxicity. Hydroxypropyl-beta-cyclodextrin (HP-beta-CD) can be used as a drug-delivery system for NFOH modifying its physico-chemical properties. The aim of this work is to characterize the inclusion complex between NFOH and HP-beta-CD. The rate of NFOH release decreases after complexation and thermodynamic parameters from the solubility isotherm studies revealed that a stable complex is formed (deltaGº= 1.7 kJ/mol). This study focuses on the physico-chemical characterization of a drug-delivery formulation that comes out as a potentially new therapeutic option for Chagas disease treatment.
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL-1 (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT, PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
Sulfasalazine is a prodrug used in the treatment of the Chron's disease and rheumatoid arthritis. Two analytical methods for analysis of sulfasalazine in oral suspension were validated using Spectrophotometric and HPLC. There is not any pharmacopoeic method to assay sulfasalazine in oral suspension. The methods are insurance and fast execution for the quality control. Both, suspension and tablets 500 mg (Azulfin®) had been analyzed by methods using UV/VIS and HPLC and the results were satisfactory.
Resumo:
A simple HPLC/UV method was developed for the determination of the anticancer candidate LaSOM 65 in rat plasma. Samples were cleaned by protein precipitation with acetonitrile (recovery > 95%), after which they were subjected to chromatography under the isocratic elution of an acetonitrile:water (45:55, ν/ν) solution with detection at 303 nm. The method was linear (r² > 0.98) over the concentration range (0.05-2 µg mL-1) with intra- and inter-day precision ranging from 9.6% to 13.6% and 4.3% to 5.4%, respectively. The accuracy of the method ranged from 85% to 113.6%, and it showed sufficient sensitivity to determine pharmacokinetic parameters of LaSOM 65 after intravenous administration to Wistar rats.
Resumo:
In spite of different methods reported in the literature to determine olanzapine in biological fluids, all of them used high volumes of plasma. Therefore, the purpose of this paper was to develop an LC-MS/MS method using small plasma volume (0.1 mL) to apply in a preclinical pharmacokinetic investigation. The method was linear over the concentration ranges of 10 - 1000 ng mL-1. Extraction recoveries, stability, and validation parameters were evaluated. Results were within the acceptable limits of international guidelines. A significant decrease in clearance led to a significant 2.26-times increase in AUC0 - 6h of olanzapine-loaded lipid-core nanocapsules compared with free-olanzapine.
Resumo:
R,S-sotalol, a ß-blocker drug with class III antiarrhythmic properties, is prescribed to patients with ventricular, atrial and supraventricular arrhythmias. A simple and sensitive method based on HPLC-fluorescence is described for the quantification of R,S-sotalol racemate in 500 µl of plasma. R,S-sotalol and its internal standard (atenolol) were eluted after 5.9 and 8.5 min, respectively, from a 4-micron C18 reverse-phase column using a mobile phase consisting of 80 mM KH2PO4, pH 4.6, and acetonitrile (95:5, v/v) at a flow rate of 0.5 ml/min with detection at lex = 235 nm and lem = 310 nm, respectively. This method, validated on the basis of R,S-sotalol measurements in spiked blank plasma, presented 20 ng/ml sensitivity, 20-10,000 ng/ml linearity, and 2.9 and 4.8% intra- and interassay precision, respectively. Plasma sotalol concentrations were determined by applying this method to investigate five high-risk patients with atrial fibrillation admitted to the Emergency Service of the Medical School Hospital, who received sotalol, 160 mg po, as loading dose. Blood samples were collected from a peripheral vein at zero, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0 and 24.0 h after drug administration. A two-compartment open model was applied. Data obtained, expressed as mean, were: CMAX = 1230 ng/ml, TMAX = 1.8 h, AUCT = 10645 ng h-1 ml-1, Kab = 1.23 h-1, a = 0.95 h-1, ß = 0.09 h-1, t(1/2)ß = 7.8 h, ClT/F = 3.94 ml min-1 kg-1, and Vd/F = 2.53 l/kg. A good systemic availability and a fast absorption were obtained. Drug distribution was reduced to the same extent in terms of total body clearance when patients and healthy volunteers were compared, and consequently elimination half-life remained unchanged. Thus, the method described in the present study is useful for therapeutic drug monitoring purposes, pharmacokinetic investigation and pharmacokinetic-pharmacodynamic sotalol studies in patients with tachyarrhythmias.
Resumo:
Bioanalytical data from a bioequivalence study were used to develop limited-sampling strategy (LSS) models for estimating the area under the plasma concentration versus time curve (AUC) and the peak plasma concentration (Cmax) of 4-methylaminoantipyrine (MAA), an active metabolite of dipyrone. Twelve healthy adult male volunteers received single 600 mg oral doses of dipyrone in two formulations at a 7-day interval in a randomized, crossover protocol. Plasma concentrations of MAA (N = 336), measured by HPLC, were used to develop LSS models. Linear regression analysis and a "jack-knife" validation procedure revealed that the AUC0-¥ and the Cmax of MAA can be accurately predicted (R²>0.95, bias <1.5%, precision between 3.1 and 8.3%) by LSS models based on two sampling times. Validation tests indicate that the most informative 2-point LSS models developed for one formulation provide good estimates (R²>0.85) of the AUC0-¥ or Cmax for the other formulation. LSS models based on three sampling points (1.5, 4 and 24 h), but using different coefficients for AUC0-¥ and Cmax, predicted the individual values of both parameters for the enrolled volunteers (R²>0.88, bias = -0.65 and -0.37%, precision = 4.3 and 7.4%) as well as for plasma concentration data sets generated by simulation (R²>0.88, bias = -1.9 and 8.5%, precision = 5.2 and 8.7%). Bioequivalence assessment of the dipyrone formulations based on the 90% confidence interval of log-transformed AUC0-¥ and Cmax provided similar results when either the best-estimated or the LSS-derived metrics were used.