23 resultados para prediction model
Resumo:
ABSTRACT Monitoring analyses aim to understand the processes that drive changes in forest structure and, along with prediction studies, may assist in the management planning and conservation of forest remnants. The objective of this study was to analyze the forest dynamics in two Atlantic rainforest fragments in Pernambuco, Brazil, and to predict their future forest diameter structure using the Markov chain model. We used continuous forest inventory data from three surveys in two forest fragments of 87 ha (F1) and 388 ha (F2). We calculated the annual rates of mortality and recruitment, the mean annual increment, and the basal area for each of the 3-year periods. Data from the first and second surveys were used to project the third inventory measurements, which were compared to the observed values in the permanent plots using chi-squared tests (a = 0.05). In F1, a decrease in the number of individuals was observed due to mortality rates being higher than recruitment rates; however, there was an increase in the basal area. In this fragment, the fit to the Markov model was adequate. In F2, there was an increase in both the basal area and the number of individuals during the 6-year period due to the recruitment rate exceeding the mortality rate. For this fragment, the fit of the model was unacceptable. Hence, for the studied fragments, the demographic rates influenced the stem density more than the floristic composition. Yet, even with these intense dynamics, both fragments showed active growth.
Resumo:
The draft forces of soil engaging tines and theoretical analysis compared to existing mathematical models, have yet not been studied in Rio Grande do Sul soils. From the existing models, those which can get the closest fitting draft forces to real measure on field have been established for two of Rio Grande do Sul soils. An Albaqualf and a Paleudult were evaluated. From the studied models, those suggested by Reece, so called "Universal Earthmoving Equation", Hettiaratchi and Reece, and Godwin and Spoor were the best fitting ones, comparing the calculated results with those measured "in situ". Allowing for the less complexity of Reece's model, it is suggested that this model should be used for modeling draft forces prediction for narrow tines in Albaqualf and Paleudut.
Resumo:
The goal of this study was to develop a fuzzy model to predict the occupancy rate of free-stalls facilities of dairy cattle, aiding to optimize the design of projects. The following input variables were defined for the development of the fuzzy system: dry bulb temperature (Tdb, °C), wet bulb temperature (Twb, °C) and black globe temperature (Tbg, °C). Based on the input variables, the fuzzy system predicts the occupancy rate (OR, %) of dairy cattle in free-stall barns. For the model validation, data collecting were conducted on the facilities of the Intensive System of Milk Production (SIPL), in the Dairy Cattle National Research Center (CNPGL) of Embrapa. The OR values, estimated by the fuzzy system, presented values of average standard deviation of 3.93%, indicating low rate of errors in the simulation. Simulated and measured results were statistically equal (P>0.05, t Test). After validating the proposed model, the average percentage of correct answers for the simulated data was 89.7%. Therefore, the fuzzy system developed for the occupancy rate prediction of free-stalls facilities for dairy cattle allowed a realistic prediction of stalls occupancy rate, allowing the planning and design of free-stall barns.
Resumo:
A model for predicting temperature evolution for automatic controling systems in manufacturing processes requiring the coiling of bars in the transfer table is presented. Although the method is of a general nature, the presentation in this work refers to the manufacturing of steel plates in hot rolling mills. The predicting strategy is based on a mathematical model of the evolution of temperature in a coiling and uncoiling bar and is presented in the form of a parabolic partial differential equation for a shape changing domain. The mathematical model is solved numerically by a space discretization via geometrically adaptive finite elements which accomodate the change in shape of the domain, using a computationally novel treatment of the resulting thermal contact problem due to coiling. Time is discretized according to a Crank-Nicolson scheme. Since the actual physical process takes less time than the time required by the process controlling computer to solve the full mathematical model, a special predictive device was developed, in the form of a set of least squares polynomials, based on the off-line numerical solution of the mathematical model.
Resumo:
This work describes a lumped parameter mathematical model for the prediction of transients in an aerodynamic circuit of a transonic wind tunnel. Control actions to properly handle those perturbations are also assessed. The tunnel circuit technology is up to date and incorporates a novel feature: high-enthalpy air injection to extend the tunnels Reynolds number capability. The model solves the equations of continuity, energy and momentum and defines density, internal energy and mass flow as the basic parameters in the aerodynamic study as well as Mach number, stagnation pressure and stagnation temperature, all referred to test section conditions, as the main control variables. The tunnel circuit response to control actions and the stability of the flow are numerically investigated. Initially, for validation purposes, the code was applied to the AWT ("Altitude Wind Tunnel" of NASA-Lewis). In the sequel, the Brazilian transonic wind tunnel was investigated, with all the main control systems modeled, including injection.
Resumo:
Reliable predictions of remaining lives of civil or mechanical structures subjected to fatigue damage are very difficult to be made. In general, fatigue damage is extremely sensitive to the random variations of material mechanical properties, environment and loading. These variations may induce large dispersions when the structural fatigue life has to be predicted. Wirsching (1970) mentions dispersions of the order of 30 to 70 % of the mean calculated life. The presented paper introduces a model to estimate the fatigue damage dispersion based on known statistical distributions of the fatigue parameters (material properties and loading). The model is developed by expanding into Taylor series the set of equations that describe fatigue damage for crack initiation.
Resumo:
In view of the importance of anticipating the occurrence of critical situations in medicine, we propose the use of a fuzzy expert system to predict the need for advanced neonatal resuscitation efforts in the delivery room. This system relates the maternal medical, obstetric and neonatal characteristics to the clinical conditions of the newborn, providing a risk measurement of need of advanced neonatal resuscitation measures. It is structured as a fuzzy composition developed on the basis of the subjective perception of danger of nine neonatologists facing 61 antenatal and intrapartum clinical situations which provide a degree of association with the risk of occurrence of perinatal asphyxia. The resulting relational matrix describes the association between clinical factors and risk of perinatal asphyxia. Analyzing the inputs of the presence or absence of all 61 clinical factors, the system returns the rate of risk of perinatal asphyxia as output. A prospectively collected series of 304 cases of perinatal care was analyzed to ascertain system performance. The fuzzy expert system presented a sensitivity of 76.5% and specificity of 94.8% in the identification of the need for advanced neonatal resuscitation measures, considering a cut-off value of 5 on a scale ranging from 0 to 10. The area under the receiver operating characteristic curve was 0.93. The identification of risk situations plays an important role in the planning of health care. These preliminary results encourage us to develop further studies and to refine this model, which is intended to implement an auxiliary system able to help health care staff to make decisions in perinatal care.
Resumo:
The SEARCH-RIO study prospectively investigated electrocardiogram (ECG)-derived variables in chronic Chagas disease (CCD) as predictors of cardiac death and new onset ventricular tachycardia (VT). Cardiac arrhythmia is a major cause of death in CCD, and electrical markers may play a significant role in risk stratification. One hundred clinically stable outpatients with CCD were enrolled in this study. They initially underwent a 12-lead resting ECG, signal-averaged ECG, and 24-h ambulatory ECG. Abnormal Q-waves, filtered QRS duration, intraventricular electrical transients (IVET), 24-h standard deviation of normal RR intervals (SDNN), and VT were assessed. Echocardiograms assessed left ventricular ejection fraction. Predictors of cardiac death and new onset VT were identified in a Cox proportional hazard model. During a mean follow-up of 95.3 months, 36 patients had adverse events: 22 new onset VT (mean±SD, 18.4±4‰/year) and 20 deaths (26.4±1.8‰/year). In multivariate analysis, only Q-wave (hazard ratio, HR=6.7; P<0.001), VT (HR=5.3; P<0.001), SDNN<100 ms (HR=4.0; P=0.006), and IVET+ (HR=3.0; P=0.04) were independent predictors of the composite endpoint of cardiac death and new onset VT. A prognostic score was developed by weighting points proportional to beta coefficients and summing-up: Q-wave=2; VT=2; SDNN<100 ms=1; IVET+=1. Receiver operating characteristic curve analysis optimized the cutoff value at >1. In 10,000 bootstraps, the C-statistic of this novel score was non-inferior to a previously validated (Rassi) score (0.89±0.03 and 0.80±0.05, respectively; test for non-inferiority: P<0.001). In CCD, surface ECG-derived variables are predictors of cardiac death and new onset VT.