27 resultados para plane-wave
Resumo:
The behavior of Petrov-Galerkin formulations for shallow water wave equations is evaluated numerically considering typical one-dimensional propagation problems. The formulations considered here use stabilizing operators to improve classical Galerkin approaches. Their advantages and disadvantages are pointed out according to the intrinsic time scale (free parameter) which has a particular importance in this kind of problem. The influence of the Courant number and the performance of the formulation in dealing with spurious oscillations are adressed.
Resumo:
This work presents an application of the Mobility Approach to the analysis of the power flow through grillage-like structures. Such structures are usually found in offshore platforms, supporting large and heavy machines. Different wave kinds (longitudinal, flexural and torsional) were initially considered in the power flow analysis between two beams joined in L. Beams excited by an in-plane point force showed strong coupling between longitudinal-flexural waves, while that for out-of-plane point force excitation, flexural-torsional waves coupling represents the most important mechanism of energy transmission. The response determination of grillages by the mobility approach requires the structure to be separated into simple beam-like structural components. Equations for rotations and displacements at the joints of all beams are written for as mobility functions, and moments and forces acting at the joints. A system of equations relating all such internal forces and moments is obtained. This approach was applied to simple grillages. Response results showed good agreement when compared to those provided by Finite Elements.
Resumo:
The results of a numerical study of premixed Hydrogen-air flows ignition by an oblique shock wave (OSW) stabilized by a wedge are presented, in situations when initial and boundary conditions are such that transition between the initial OSW and an oblique detonation wave (ODW) is observed. More precisely, the objectives of the paper are: (i) to identify the different possible structures of the transition region that exist between the initial OSW and the resulting ODW and (ii) to evidence the effect on the ODW of an abrupt decrease of the wedge angle in such a way that the final part of the wedge surface becomes parallel to the initial flow. For such a geometrical configuration and for the initial and boundary conditions considered, the overdriven detonation supported by the initial wedge angle is found to relax towards a Chapman-Jouguet detonation in the region where the wedge surface is parallel to the initial flow. Computations are performed using an adaptive, unstructured grid, finite volume computer code previously developed for the sake of the computations of high speed, compressible flows of reactive gas mixtures. Physico-chemical properties are functions of the local mixture composition, temperature and pressure, and they are computed using the CHEMKIN-II subroutines.
Resumo:
In awake rats a single recurrent larger tidal volume (deep breaths) occurs at regular intervals, followed by oscillations in arterial pressure and heart rate. In the present study we recorded the changes in blood pressure, heart rate and ventilation during the wakefulness-sleep cycle identified by electrocorticographic records in order to determine whether the deep breaths and cardiovascular oscillations were associated with changes in the electrocorticogram. During several episodes of slow-wave sleep (SWS) in 7 rats the deep breaths and oscillations in arterial pressure and heart rate were preceded by SWS desynchronization. The interval between deep breaths during SWS was 71 ± 4 s, the period between initial desynchronization and the generation of deep breaths was 3.98 ± 0.45 s and the duration of SWS desynchronization was 11 ± 0.65 s. Hypotension (-16 ± 1 mmHg) and tachycardia (+15 ± 5 bpm) were observed during deep breaths in the SWS state. These data indicate that the oscillations in arterial pressure and heart rate during SWS are associated with deep breaths, which in turn are preceded by desynchronization of the electrocorticogram in this state of sleep
Resumo:
An assumption commonly made in the study of visual perception is that the lower the contrast threshold for a given stimulus, the more sensitive and selective will be the mechanism that processes it. On the basis of this consideration, we investigated contrast thresholds for two classes of stimuli: sine-wave gratings and radial frequency stimuli (i.e., j0 targets or stimuli modulated by spherical Bessel functions). Employing a suprathreshold summation method, we measured the selectivity of spatial and radial frequency filters using either sine-wave gratings or j0 target contrast profiles at either 1 or 4 cycles per degree of visual angle (cpd), as the test frequencies. Thus, in a forced-choice trial, observers chose between a background spatial (or radial) frequency alone and the given background stimulus plus the test frequency (1 or 4 cpd sine-wave grating or radial frequency). Contrary to our expectations, the results showed elevated thresholds (i.e., inhibition) for sine-wave gratings and decreased thresholds (i.e., summation) for radial frequencies when background and test frequencies were identical. This was true for both 1- and 4-cpd test frequencies. This finding suggests that sine-wave gratings and radial frequency stimuli are processed by different quasi-linear systems, one working at low luminance and contrast level (sine-wave gratings) and the other at high luminance and contrast levels (radial frequency stimuli). We think that this interpretation is consistent with distinct foveal only and foveal-parafoveal mechanisms involving striate and/or other higher visual areas (i.e., V2 and V4).
Resumo:
Electrocardiograms (ECG) obtained with standard limb leads and augmented unipolar limb leads were recorded from 17 unanesthetized adult sloths. The animals were held in their habitual position in an experimental chair. We determined heart rate and rhythm from the R-R intervals, the amplitude and duration of each wave, and the duration of the segments and intervals of the ECG. The mean electrical axes of P and T waves and QRS complex were calculated on the basis of the amplitude of these waves in leads I, II, III, aV R, aV L, and aV F. The P wave appeared positive in most tracings with low amplitude in lead II, the QRS complex was generally negative in leads aV R, III and aV F, and no arrhythmias were observed. With a mean ± SD heart rate for all recordings of 81 ± 18 bpm, the duration of P and T waves, QRS complex, and PR, QT and RR intervals averaged 0.05 ± 0.02, 0.15 ± 0.05, 0.07 ± 0.02, 0.13 ± 0.02, 0.38 ± 0.04, and 0.74 ± 0.17 s, respectively. The ECG shape had a definite configuration on each lead. The angles of the mean ± SD electrical axes for atrial and ventricular depolarization and ventricular repolarization in the horizontal plane were +34 ± 68º, -35 ± 63º, and -23 ± 68º, respectively. All electrical axes showed great variations and their mean values suggest that, when the sloth is in a seated position, the heart could be displaced by the diaphragm to a semi-horizontal position.
Resumo:
Marfan syndrome (MS) is a dominant autosomal disease caused by mutations in chromosome 15, the locus controlling fibrillin 1 synthesis, and may exhibit skeletal, ocular, cardiovascular, and other manifestations. Pulse wave velocity (PWV) is used to measure arterial elasticity and stiffness and is related to the elastic properties of the vascular wall. Since the practice of exercise is limited in MS patients, it was of interest to analyze the acute effect of submaximal exercise on aortic distensibility using PWV and other hemodynamic variables in patients with MS with either mild or no aortic dilatation. PWV and physiological variables were evaluated before and after submaximal exercise in 33 patients with MS and 18 controls. PWV was 8.51 ± 0.58 at rest and 9.10 ± 0.63 m/s at the end of exercise (P = 0.002) in the group with MS and 8.07 ± 0.35 and 8.98 ± 0.56 m/s in the control group, respectively (P = 0.004). Comparative group analysis regarding PWV at rest and at the end of exercise revealed no statistically significant differences. The same was true for the group that used β-blockers and the one that did not. The final heart rate was 10% higher in the control group than in the MS group (P = 0.01). Final systolic arterial pressure was higher in the control group (P = 0.02). PWV in MS patients with mild or no aortic dilatation did not differ from the control group after submaximal effort.
Resumo:
The present study was conducted to obtain reference values for brachial-ankle pulse wave velocity (baPWV) and to evaluate influencing factors of baPWV according to gender. Using automatic devices, baPWV was measured simultaneously in 2095 subjects. A total of 647 healthy subjects, none of whom presented atherosclerotic risk factors, were analyzed in the present study. Two different statistical methods were used to obtain reference values for baPWV according to subject gender and age. The association between baPWV value and gender, as well as other features, were analyzed. For male subjects, multiple stepwise analysis showed that age, systolic blood pressure (SBP), heart rate (HR), and plasma levels of triglycerides (TG) were independent predictors of baPWV. For female subjects, age, SBP, HR, and plasma levels of uric acid (UA) were independent predictors of baPWV. In male subjects, the upper limits of baPWV values were 1497.43/1425.00, 1518.67/1513.25, 1715.97/1726.50, 1925.20/1971.90, and 2310.18/2115.00 cm/s, obtained using two different statistical methods for the age ranges of 30-39, 40-49, 50-59, 60-69, and 70 and older, respectively. For females, the upper limits of baPWV values were 1426.70/1411.13, 1559.15/1498.95, 1733.50/1739.00, 1958.63/1973.78, and 2720.80/2577.00 cm/s for the age ranges of 30-39, 40-49, 50-59, 60-69, and 70 and older, respectively. Aging is the most important influencing factor for baPWV value and its effect is more prominent in females. The reference values of baPWV according to age and gender may be useful for the clinical diagnosis and preventive therapy of cardiovascular diseases.
Resumo:
Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.
Differential effects of aging on spatial contrast sensitivity to linear and polar sine-wave gratings
Resumo:
Changes in visual function beyond high-contrast acuity are known to take place during normal aging. We determined whether sensitivity to linear sine-wave gratings and to an elementary stimulus preferentially processed in extrastriate areas could be distinctively affected by aging. We measured spatial contrast sensitivity twice for concentric polar (Bessel) and vertical linear gratings of 0.6, 2.5, 5, and 20 cycles per degree (cpd) in two age groups (20-30 and 60-70 years). All participants were free of identifiable ocular disease and had normal or corrected-to-normal visual acuity. Participants were more sensitive to Cartesian than to polar gratings in all frequencies tested, and the younger adult group was more sensitive to all stimuli tested. Significant differences between sensitivities of the two groups were found for linear (only 20 cpd; P<0.01) and polar gratings (all frequencies tested; P<0.01). The young adult group was significantly more sensitive to linear than to circular gratings in the 20 cpd frequency. The older adult group was significantly more sensitive to linear than to circular gratings in all spatial frequencies, except in the 20 cpd frequency. The results suggest that sensitivity to the two kinds of stimuli is affected differently by aging. We suggest that neural changes in the aging brain are important determinants of this difference and discuss the results according to current models of human aging.
Resumo:
The aim of this study was to assess contrast sensitivity for angular frequency stimuli as well as for sine-wave gratings in adults under the effect of acute ingestion of alcohol. We measured the contrast sensitivity function (CSF) for gratings of 0.25, 1.25, 2.5, 4, 10, and 20 cycles per degree of visual angle (cpd) as well as for angular frequency stimuli of 1, 2, 4, 24, 48, and 96 cycles/360°. Twenty adults free of ocular diseases, with normal or corrected-to-normal visual acuity, and no history of alcoholism were enrolled in two experimental groups: 1) no alcohol intake (control group) and 2) alcohol ingestion (experimental group). The average concentration of alcohol in the experimental group was set to about 0.08%. We used a paradigm involving a forced-choice method. Maximum sensitivity to contrast for sine-wave gratings in the two groups occurred at 4 cpd sine-wave gratings and at 24 and 48 cycles/360° for angular frequency stimuli. Significant changes in contrast sensitivity were observed after alcohol intake compared with the control condition at spatial frequency of 4 cpd and 1, 24, and 48 cycles/360° for angular frequency stimuli. Alcohol intake seems to affect the processing of sine-wave gratings at maximum sensitivity and at the low and high frequency ends for angular frequency stimuli, both under photopic luminance conditions.
Resumo:
Accumulating evidence has suggested that high salt and potassium might be associated with vascular function. The aim of this study was to investigate the effect of salt intake and potassium supplementation on brachial-ankle pulse wave velocity (PWV) in Chinese subjects. Forty-nine subjects (28-65 years of age) were selected from a rural community of northern China. All subjects were sequentially maintained on a low-salt diet for 7 days (3.0 g/day NaCl), a high-salt diet for an additional 7 days (18.0 g/day NaCl), and a high-salt diet with potassium supplementation for a final 7 days (18.0 g/day NaCl+4.5 g/day KCl). Brachial-ankle PWV was measured at baseline and on the last day of each intervention. Blood pressure levels were significantly increased from the low-salt to high-salt diet, and decreased from the high-salt diet to high-salt plus potassium supplementation. Baseline brachial-ankle PWV in salt-sensitive subjects was significantly higher than in salt-resistant subjects. There was no significant change in brachial-ankle PWV among the 3 intervention periods in salt-sensitive, salt-resistant, or total subjects. No significant correlations were found between brachial-ankle PWV and 24-h sodium and potassium excretions. Our study indicates that dietary salt intake and potassium supplementation, at least in the short term, had no significant effect on brachial-ankle PWV in Chinese subjects.