50 resultados para parasitophorous vacuoles
Resumo:
Five hemocyte types were identified in the hemolymph of Panstrongylus megistus by phase contrast and common light microscopy using some histochemical methods. These are: Prohemocytes, small cells presenting a great nucleus/cytoplasm ratio; Plasmatocytes, the most numerous hemocytes, are polymorphic cells mainly characterized by a large amount of lysosomes; Granulocytes, hemocytes very similar to plasmatocytes which contain cytoplasmic granules and are especially rich in polysaccharides; Oenocytoids, cells presenting a small nucleus and a thick cytoplasm; they show many small round vacuoles when observed in Giemsa smears and many cytoplasmic granules under phase microscopy; Adipohemocytes, very large hemocytes, presenting many fat droplet inclusions which could correspond to free fat bodies which entered the hemolymph. Only prohemocytes and plasmatocytes can be clearly classified; all the other hemocyte types have a more ambiguous classification.
Resumo:
Culture forms of four strains of Endotrypanum (E. schaudinni and E. monterogeii) were processed for transmission electron microscopy and analyzed at the ultrastructural level. Quantitative data about some cytoplasmic organelles were obeined by stereology. All culture forms were promastigotes. In their cytoplasm four different organelles could be found: lipid inclusions (0,2-0,4 µm in diameter), mebrane-bounded vacuoles (0.10-0,28 µm in diameter), glycosomes (0,2-0,3 µm in diameter), and the mitochondrion. The kenetoplast appears as a thin band, except for the strain IM201, which possesses a broader structure, and possibly is not a member of this genus. Clusters of virus-like particles were seen in the cytoplasm of the strain LV88. The data obtained show that all strains have the typical morphological feature of the trypanosomatids. Only strain IM201 could be differentiated from the others, due to its larger kenetoplast-DNA network and its large mitochondrial and glycosomal relative volume. The morphometrical data did not allow the differentiation between E. schaudinni (strains IM217 and M6226) and E. monterogeii (strain LV88).
Resumo:
Experimental infections of the phytophagous Hemiptera Dysdercus peruvianus with different trypanosomatids were studied for up to 55 days by light microscopy while the course of infection with Leptomonas seymouri and the Leptomonas isolate 49/553G.O. was analyzed by electron microscopy. Rates of infection of D. peruvianus varied according to the infecting flagellate. The lower part of the midgut was found to be the preferential site of colonization where most flagellates were found isolated or arranged in clumps or rosettes. Specialized junctional structures with host cells were never observed. Flagellates could also be seen inside midgut cells within a parasitophorous vacuole. Infection of haemocoele and salivary glands was also observed.
Resumo:
The intraerythrocytic malarial parasite is involved in an extremely intensive anabolic activity while it resides in its metabolically quiescent host cell. The necessary fast uptake of nutrients and the discharge of waste product, are guaranteed by parasite-induced alterations of the constitutive transporters of the host cell and the production of new parallel pathways. The membrane of the host cell thus becomes permeable to phospholipids, purine bases and nucleosides, small non-electrolytes, anions and cations. When the new pathways are quantitatively unimportant, classical inhibitors of native transporters can be used to inhibit parasite growth. Several compounds were found to effectively inhibit the new pathways and consequently, parasite growth. The pathways have also been used to introduce cytotoxic agents. The parasitophorous membrane consists of channels which are highly permeable to small solutes and display no ion selectivity. Transport of some cations and anions across the parasite membrane is rapid and insensitive to classical inhibitors, and in some cases it is mediated by specific antiporters which respond to their respective inhibitors. Macromolecules have been shown to reach the parasitophorous space through a duct contiguous with the host cell membrane, and subsequently to be endocytosed at the parasite membrane. The simultaneous presence of the parasitophorous membrane channels and the duct, however, is incompatible with experimental evidences. No specific inhibitors were found as yet that would efficiently inhibit transport through the channels or the duct.
Resumo:
The ultrastructure of endogenous stages of Eimeria ninakohlyakimovae was observed in epithelial cells of cecum and colon crypts from a goat experimentally infected with 2.0 x 105 oocysts/kg. The secondary meronts developed above the nucleus of the host cell. The nucleus first divides and merozoites then form on the surface of multinucleated meronts. Free merozoites in the parasitophorous vacuole present a conoid, double membrane, one pair of rhoptries, micronemes, micropore, anterior and posterior polar ring, a nucleus with a nucleolus and peripheral chromatin. The microgamonts are located below the nucleus of the host cell and contain several nuclei at the periphery of the parasite. The microgametes consist of a body, a nucleus, three flagella and mitochondria. The macrogamonts develop below the nucleus of the host cell and have a large nucleus with a prominent nucleolus. The macrogametes contain a nucleus, wall-forming bodies of type I and type II. The young oocysts present a wall containing two layers and a sporont
Resumo:
Little is known about the molecular mechanisms underlying the release of merozoites from malaria infected erythrocytes. In this study membranous structures present in the culture medium at the time of merozoite release have been characterized. Biochemical and ultrastructural evidence indicate that membranous structures consist of the infected erythrocyte membrane, the parasitophorous vacuolar membrane and a residual body containing electron dense material. These are subcellular compartments expected in a structure that arises as a consequence of merozoite release from the infected cell. Ultrastructural studies show that a novel structure extends from the former parasite compartment to the surface membrane. Since these membrane modifications are detected only after merozoites have been released from the infected erythrocyte, it is proposed that they might play a role in the release of merozoites from the host cell
Resumo:
Intestine samples of Bufo sp. tadpoles with parasitism confirmed for Giardia agilis were studied by transmission electron microscopy. The G. agilis trophozoites were long and thin. The plasma membrane was sometimes undulated and the cytoplasm, adjacent to the dorsal and ventral regions, showed numerous vacuoles. The two nuclei presented prominent nucleoli. The cytoplasm was electron-dense with free ribosomes, glycogen and rough endoplasmic reticulum-like structures. Polyhedral inclusions were observed in the cytoplasm and outside the protozoan; some of these inclusions exhibited membrane disruption. The flagella ultrastructure is typical, with the caudal pair accompanied by the funis. Next to the anterior pair, osmiophilic material was noticed. The ventro-lateral flange was short and thick, supported by the marginal plates that penetrated into its distal extremity; only its distal portion had adjacent osmiophilic filament. The G. agilis trophozoites showed the general subcellular feature of the genus. However, the ventro-lateral flange ultrastructure was an intermediate type between G. muris and G. duodenalis.
Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi
Resumo:
Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV). In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.
Resumo:
The gregarine Cephaloidophora communis was observed for the first time in Brazil in the barnacles Euraphia rhyzophorae collected in Angra dos Reis, Rio de Janeiro, Brazil, between 1990 and 1996. Histological studies showed growth phases of the parasite in specific parts of the digestive system. The intracellular forms occurred in the vacuoles of the intestinal cells. Syzygy was frequent, and the most common form following syzygy was cylindrical, with a single membrane. The cytoplasm of the gregarines was always irregular, dense, and occasionally presenting a dark stoch area.
Resumo:
Biomphalaria glabrata and Schistosoma mansoni relationship was studied by light microscopy (LM) and freeze-fracture replica technique (FFR). We observed very thin cytoplasmic extensions of hemocytes in the LM, which then surround immobilize the miracidia. FFR images showed that the contact site between hemocytes cytoplasmic extensions and the external tegumentary coat involved only superficial layers of miracidia. Numerous vacuoles and filopodia were observed in the hemocyte cytoplasm, the latter binding with those from neighboring cells. In spite of the close interfilopodia contact, no cellular junctions were seen at these sites nor between filopodia-miracidia contact areas. The observed migration of hemocytes and their disposition in layers surrounding the miracidia in vitro correspond to previous studies.
Resumo:
The effects of blood components, nerve-cord severance, and ecdysone therapy on the posterior midgut epithelial cells of 5th-instar Rhodnius prolixus nymphs 10 days after feeding were analyzed by transmission electron microscopy. Cutting the nerve-cord of the blood-fed insects partially reduced the development of microvilli and perimicrovillar membranes (PMM), and produced large vacuoles and small electrondense granules; insects fed on Ringer's saline diet exhibited well developed microvilli and low PMM production; swolled rough endoplasmatic reticulum and electrondense granules; Ringer's saline meal with ecdysone led to PMM development, glycogen particles, and several mitochondria in the cytoplasm; epithelial cells of the insects fed on Ringer's saline meal whose nerve-cord was severed showed heterogeneously distributed microvilli with reduced PMM production and a great quantity of mitochondria and glycogen in the cytoplasm; well developed microvilli and PMM were observed in nerve-cord severed insects fed on Ringer's saline meal with ecdysone; Ringer's saline diet containing hemoglobin recovered the release of PMM; and insects fed on human plasma showed slightly reduced PMM production, although the addition of ecdysone in the plasma led to a normal midgut ultrastructural organization. We suggest that the full development of microvilli and PMM in the epithelial cells depends on the abdominal distension in addition to ingestion of hemoglobin, and the release of ecdysone.
Resumo:
Historically, scientists in Brazil has significantly contributed to the biology, cultivation and structural organization of the pathogenic protozoan Toxoplasma gondiiand its interaction with host cells, starting with the description of the protozoan by Splendore in 1908. The intracellular and extracellular corpuscoli observed in rabbits, corresponded to what we now as tachyzoites. Later on, a pioneering method to grow T. gondii in tissue cultures was developed by Guimarães and Meyer, 1942. They also observed for the first time T. gondii by transmission electron microscopy and made the initial description of the cytoskeleton of T. gondii by observing negatively stained cells. In the 1980's, the relation of the cytoskeleton with the sub-pellicular microtubules was reveled by freeze-fracture. More recently, several Brazilian groups have analyzed in detail basic aspects of the early interaction of the protozoan with the host cell, such as the role of protein phosphorylation, transfer of host cell surface components to the protozoan and genesis and organization of the parasitophorous vacuole. Tachyzoites strategically inhibit nitric oxide production during active invasion of activated macrophages. In vitro studies on the sexual cycle of T. gondii using primary cultures of cat enterocytes and the egress from host cells are being carried out. Perspectives are that the contribution of Brazilian science to the knowledge on T. gondii biology will continue to flourish in years to come.
Resumo:
Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs) as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.
Resumo:
Although the predilection for Toxoplasma gondii to form cysts in the nervous system and skeletal and heart muscles has been described for more than fifty years, skeletal muscle cells (SkMCs) have not been explored as a host cell type to study the Toxoplasma-host cell interaction and investigate the intracellular development of the parasite. Morphological aspects of the initial events in the Toxoplasma-SkMC interaction were analysed and suggest that there are different processes of protozoan adhesion and invasion and of the subsequent fate of the parasite inside the parasitophorous vacuole (PV). Using scanning electron microscopy,Toxoplasma tachyzoites from the mouse-virulent RH strain were found to be attached to SkMCs by the anterior or posterior region of the body, with or without expansion of the SkMC membrane. This suggests that different types of parasite internalization occurred. Asynchronous multiplication and differentiation of T. gondii were observed. Importantly, intracellular parasites were seen to display high amounts of amylopectin granules in their cytoplasm, indicating that tachyzoites of the RH strain were able to differentiate spontaneously into bradyzoites in SkMCs. This stage conversion occurred in approximately 3% of the PVs. This is particularly intriguing as tachyzoites of virulent Toxoplasma strains are not thought to be prone to cyst formation. We discuss whether biological differences in host cells are crucial to Toxoplasma stage conversion and suggest that important questions concerning the host cell type and its relevance in Toxoplasma differentiation are still unanswered.
Resumo:
The Immunity Related GTPases (IRG proteins) constitute a large family of interferon-inducible proteins that mediate early resistance to Toxoplasma gondii infection in mice. At least six members of this family are required for resistance of mice to virulent T. gondii strains. Recent results have shown that the complexity of the resistance arises from complex regulatory interactions between different family members. The mode of action against T. gondii depends on the ability of IRG proteins to accumulate on the parasitophorous vacuole of invading tachyzoites and to induce local damage to the vacuole resulting in disruption of the vacuolar membrane. Virulent strains of T. gondiiovercome the IRG resistance system, probably by interfering with the loading of IRG proteins onto the parasitophorous vacuole membrane. It may be assumed that T. gondii strains highly virulent for mice will be disadvantaged in the wild due to the rapid extinction of the infected host, while it is self-evident that susceptibility to virulent strains is disadvantageous to the mouse host. We consider the possibility that this double disadvantage is compensated in wild populations by segregating alleles with different resistance and susceptibility properties in the IRG system.