104 resultados para oxygenated hydrocarbons
Resumo:
The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol) obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 ) were tested against Staphylococcus aureus (ATCC 25923), Enterococcus faecium (ATCC23212), Pseudomonas aeruginosa (ATCC27853), Escherichia coli (ATCC11229), Salmonella choleraesuis (ATCC10708), Klebsiella pneumoniae (ATCC13883), and Candida albicans (a human isolate). Better antimicrobial activity was observed with D. communis and D. montana var. montana ethyl acetate extracts. Phytochemical analyses from D. communis, D. montana var. montana and D. brevifolia yielded 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin); long chain aliphatic hydrocarbons were isolated from D. communis and from D. villosa var. villosa, a mixture of long chain aliphatic alcohols and carboxylic acids, was isolated from D. communis and 3b-O-acetylaleuritolic acid from D. villosa var. villosa.
Resumo:
The herbaceous shrub Tetradenia riparia has been traditionally used to treat inflammatory and infectious diseases. Recently, a study showed that T. riparia essential oil (TrEO) obtained in summer has antileishmanial effects, although these results could be influenced by seasonal variation. This study evaluated the activity of the TrEO obtained in different seasons against Leishmania (Leishmania) amazonensis, in vitro and in vivo. The compounds in the TrEO were analysed by gas chromatography-mass spectrometry; terpenoids were present and oxygenated sesquiterpenes were the majority compounds (55.28%). The cytotoxicity and nitric oxide (NO) production were also tested after TrEO treatment. The TrEO from all seasons showed a 50% growth inhibitory concentration for promastigotes of about 15 ng/mL; at 30 ng/mL and 3 ng/mL, the TrEO reduced intracellular amastigote infection, independently of season. The TrEO from plants harvested in summer had the highest 50% cytotoxic concentration, 1,476 ng/mL for J774.A1 macrophages, and in spring (90.94 ng/mL) for murine macrophages. NO production did not change in samples of the TrEO from different seasons. The antileishmanial effect in vivo consisted of a reduction of the parasite load in the spleen. These results suggest that the TrEO has potential effects on L. (L.) amazonensis, consonant with its traditional use to treat parasitic diseases.
Resumo:
Abstract OBJECTIVE To identify the composition of the smoke produced by electrocautery use during surgery. METHOD Integrative review with search for primary studies conducted in the databases of the US National Library of Medicine National Institutes of Health, Cumulative Index to Nursing and Allied Health Literature, and Latin American and Caribbean Health Sciences, covering the studies published between 2004 and 2014. RESULTS The final sample consisted of 14 studies grouped into three categories, namely; polycyclic aromatic hydrocarbons, volatile compounds and volatile organic compounds. CONCLUSION There is scientific evidence that electrocautery smoke has volatile toxic, carcinogenic and mutagenic compounds, and its inhalation constitutes a potential chemical risk to the health of workers involved in surgeries.
Resumo:
Soil organic matter from the surface horizon of two Brazilian soils (a Latosol and a Chernosol), in bulk samples (in situ SOM) and in HF-treated samples (SOM), was characterized by elemental analyses, diffuse reflectance (DRIFT) and transmission Fourier transform infrared spectroscopy (T-FTIR). Humic acids (HA), fulvic acids (FA) and humin (HU) isolated from the SOM were characterized additionally by ultraviolet-visible spectroscopy (UV-VIS). After sample oxidation and alkaline treatment, the DRIFT technique proved to be more informative for the detection of "in situ SOM" and of residual organic matter than T-FTIR. The higher hydrophobicity index (HI) and H/C ratio obtained in the Chernosol samples indicate a stronger aliphatic character of the organic matter in this soil than the Latosol. In the latter, a pronounced HI decrease was observed after the removal of humic substances (HS). The weaker aliphatic character, the higher O/C ratio, and the T-FTIR spectrum obtained for the HU fraction in the Latosol suggest the occurrence of surface coordination of carboxylate ions. The Chernosol HU fraction was also oxygenated to a relatively high extent, but presented a stronger hydrophobic character in comparison with the Latosol HU. These differences in the chemical and functional group composition suggest a higher organic matter protection in the Latosol. After the HF treatment, decreases in the FA proportion and the A350/A550 ratio were observed. A possible loss of FA and condensation of organic molecules due to the highly acid medium should not be neglected.
Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation
Resumo:
Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.
Resumo:
The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum) and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil). Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight), height, and number of bacteria in the soil (pots with or without plants). Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05) and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.
Resumo:
The rate of carbon dioxide production is commonly used as a measure of microbial activity in the soil. The traditional method of CO2 determination involves trapping CO2 in an alkali solution and then determining CO2 concentration indirectly by titration of the remaining alkali in the solution. This method is still commonly employed in laboratories throughout the world due to its relative simplicity and the fact that it does not require expensive, specific equipment. However, there are several drawbacks: the method is time-consuming, requires large amounts of chemicals and the consistency of results depends on the operator's skills. With this in mind, an improved method was developed to analyze CO2 captured in alkali traps, which is cheap and relatively simple, with a substantially shorter sample handling time and reproducibility equivalent to the traditional titration method. A comparison of the concentration values determined by gas phase flow injection analysis (GPFIA) and titration showed no significant difference (p > 0.05), but GPFIA has the advantage that only a tenth of the sample volume of the titration method is required. The GPFIA system does not require the purchase of new, costly equipment but the device was constructed from items commonly found in laboratories, with suggestions for alternative configurations for other detection units. Furthermore, GPFIA for CO2 analysis can be equally applied to samples obtained from either the headspace of microcosms or from a sampling chamber that allows CO2 to be released from alkali trapping solutions. The optimised GPFIA method was applied to analyse CO2 released from degrading hydrocarbons from a site contaminated by diesel spillage.
Resumo:
The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (α-ARHD bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirão Experimental Station - secondary forest (SF) and agriculture (AG) -, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.
Resumo:
The catalytic decomposition of soybean oil was studied in a fix bed reactor at 673 and 773 K and using amorphous silica-alumina and the zeolites USY, H-Mordenite and H-ZSM-5 as catalysts. Both the selectivity and the catalytic activity were determined by studying the product composition resulting from the chemical reactions. Physicochemical characteristics of the catalysts were obtained by X-ray fluorescence, Fourier Transform infrared spectroscopy, 29Si and 27Al Nuclear Magnetic Ressonance and textural analysis. The zeolites USY and H-ZSM-5, showing higher Brönsted acidity, yielded products with higher concentration in aromatic hydrocarbons, whereas with both H-Mordenite and amorphous silica-alumina the main products were paraffins.
Resumo:
In this paper we describe the reduction by NaBH4 of some cyclopentanones containing an oxygenated function at the side chain position beta to the carbonyl group, both in the presence and in the absence of CeCl3. Some suggestions for the rationalization of the results are discussed, considering the stereochemical course of the reactions.
Resumo:
In the last two decades, the use of oxygenated fuels, like methanol and ethanol, pure or in mixture with gasoline, has been growing due to benefits introduced into the air quality. In Brasil, the fraction of light duty vehicles powered by pure hydrated ethanol is estimated at about 4 million, while the remaining vehicles actually utilize a mixture (22:78 v/v) of ethanol:gasoline. As a consequence, there's a need for the availability of methods that can provide the evaluation of possible impacts of alcohol emissions in the formation of chemical species in the atmosphere, as ozone, aldehydes, carboxylic acids and so on. In this paper, methanol and ethanol are discussed in their general aspects, as well as their atmospheric sources, chemical reactivity and available methods of analysis.
Resumo:
This review is about the aliphatic, alicyclic and aromatic compounds (non-heterocyclic compounds) that are present in the volatile fractions of roasted coffees. Herein, the contents, aroma precursors and the sensorial properties of volatile phenols, aldehydes, ketones, alcohols, ethers, hydrocarbons, carboxylic acids, anhydrides, esters, lactones, amines and sulphur compounds are discussed. Special attention is given to the compounds of these groups that are actually important to the final aroma of roasted coffees.
Resumo:
Polycyclic aromatic hydrocabons (PAHs) and their nitroderivatives (NPAHs) are ubiquitous in the environment and they are produced in several industrial and combustion processes. Some of these compounds are potent carcinogens/mutagens and their determination in biological samples is an important step for exposure control. A review of the analytical methodologies used for the determination of PAHs and their metabolites in biological samples is presented.
Resumo:
The fractionation column with SiO2 of the hexane extract of Sebastiania argutidens (Euphorbiaceae) yielded fractions containing hydrocarbons, carboxylic acids, sterols and pentacyclic triterpenes. Besides, one fraction showed the presence of several methyl esters, including four uncommon long chain palmitate esthers as minor components. The characterization of these chemical constituents have been done by High Resolution Gas Chromatography (HRGC) and HRGC coupled to Mass Spectrometry (GC/MS). Campesterol, stigmasterol, b-sitosterol, glutin-5-en-3-ol were identified by HRGC co-injection with standards.
Resumo:
In the last three decades carbonyl compounds, aldehydes and ketones, have received a great deal of attention due to their strong influence on photochemical smog formation and their recognized adverse human health effects. Carbonyl compounds are directly emitted into the atmosphere by combustion sources and also produced from photochemical oxidation of hydrocarbons and other organic compounds. In this paper it is presented a general overview about the carbonyl compounds sources, reactivity, concentration levels and toxicological effects.