68 resultados para optimal recovery
Resumo:
While human immunodeficiency virus (HIV)-1 chemokine co-receptors 5 tropism and the GWGR motif in the envelope third variable region (V3 loop) have been associated with a slower disease progression, their influence on antiretroviral response remains unclear. The impact of baseline V3 characteristics on treatment response was evaluated in a randomised, double blind, prospective cohort study with patients initiating highly active antiretroviral therapy with lopinavir or efavirenz plus azithothymidine/3TC (1:1) over 48 weeks. Similar virological and immunological responses were observed for both treatment regimens. The 43 individuals had a mean baseline CD4 T cell count of 119 cells/mm³ [standard deviation (SD) = 99] and a mean viral load of 5.09 log10 copies/mL (SD = 0.49). The GWGR motif was not associated with a CD4 T cell response, but predicted R5 tropism by the geno2pheno[clinical20%] algorithm correlated with higher CD4 T cell levels at all monitoring points (p < 0.05). Moreover, higher false-positive rates (FPR) values from this analysis revealed a strong correlation with CD4 T cell recovery (p < 0.0001). Transmitted drug resistance mutations, documented in 3/41 (7.3%) cases, were unrelated to the assigned antiretroviral regimen and had no impact on patient outcomes. In conclusion, naÏve HIV-1 R5 infected patients exhibited higher CD4 T cell counts at baseline; this difference was sustained throughout therapy. The geno2pheno[clinical] option FPR positively correlated with CD4 T cell gain and may be useful in predicting CD4 T cell recovery.
Resumo:
It is important to understand the mechanisms that enable peripheral neurons to regenerate after nerve injury in order to identify methods of improving this regeneration. Therefore, we studied nerve regeneration and sensory impairment recovery in the cutaneous lesions of leprosy patients (LPs) before and after treatment with multidrug therapy (MDT). The skin lesion sensory test results were compared to the histopathological and immunohistochemical protein gene product (PGP) 9.5 and the p75 nerve growth factor receptors (NGFr) findings. The cutaneous neural occupation ratio (CNOR) was evaluated for both neural markers. Thermal and pain sensations were the most frequently affected functions at the first visit and the most frequently recovered functions after MDT. The presence of a high cutaneous nerve damage index did not prevent the recovery of any type of sensory function. The CNOR was calculated for each biopsy, according to the presence of PGP and NGFr-immunostained fibres and it was not significantly different before or after the MDT. We observed a variable influence of MDT in the recovery from sensory impairment in the cutaneous lesions of LPs. Nociception and cold thermosensation were the most recovered sensations. The recovery of sensation in the skin lesions appeared to be associated with subsiding inflammation rather than with the regenerative activity of nerve fibres.
Resumo:
Pasture is the main form of land use in Amazonia. Over time the pasture grass loses vigor and yields decrease, indicating a certain degree of degeneration. The main causes of degradation are lack of pasture maintenance and subsequent weed infestation, the choice of regionally unsuitable forage species and excessive grazing. The main purpose of this study was to evaluate the impact of different recovery managements on soil chemical properties and grass yield of a degraded pasture in Rondônia. For this purpose, an experiment was installed in October 2001, consisting of five treatments: C = control; HA = harrowing + NPK + micronutrients; HE = Herbicide + NK + micronutrients; R = No-tillage rice + NPK + micronutrients; and S = No-tillage soybean + PK + micronutrients. The following N, P and K sources were used: ammonium sulfate for N, calcined phosphate for P and potassium chloride for K. The experiment was arranged in a randomized block design with four replications. The shoot dry matter yield of the grass was analyzed as of the 35th month of experimentation, in a dry and a rainy period. Phosphorus fertilization resulted in significant increases in Ca2+ and Mg2+ and increasing trend of P in the topsoil in the initial months of the experiment in treatments HA and S and increases in Ca2+ and P (trend) in the treatment R. The cumulative production of Brachiaria brizantha, from Sep/2004 to Mar/2005, was 30,025, 28,267 and 27,735 kg ha-1 shoot dry matter in the treatments HA, R and S, respectively. These values differed significantly from treatments C and HE, with 17,040 and 17,057 kg ha-1, respectively. It was concluded that phosphorus fertilization associated to pasture reform was effective to raise the dry matter yield of Brachiaria brizantha. Rice or soybean under no-tillage is recommended as a practice of pasture recovery, due to the residual effect of fertilization.
Resumo:
Nitrogen usually determines the productive potential of forage crops, although it is highly unstable in the environment. Studies on recovery rates and use efficiency are important for more reliable fertilizer recommendations to reduce costs and avoid environmental pollution. The purpose of this study was to evaluate N use efficiency and recovery rate of Alexandergrass pasture (Brachiaria - Syn. Urochloa plantaginea) as well as N-NO3- and N-NH4+ soil concentrations using different levels of N fertilization under two grazing intensities. The experiment was arranged in a randomized block design in a factorial scheme with three replications. Treatments consisted of three N rates (0, 200 and 400 kg ha-1 N) and two grazing intensities termed low mass (LM; forage mass of 2,000 kg ha-1 of DM) and high mass (HM; forage mass of 3,600 kg ha-1 of DM) under continuous stocking and variable stocking rates. Results of N fertilization with 200 kg ha-1 were better than with 400 kg ha-1 N. There was a significant effect of N rates on soil N-NO3-concentration with higher levels in the first layer of the soil profile in the treatment with 400 kg ha-1 N. Grazing intensity also affected soil N-NO3- concentration, by increasing the levels under the higher stocking rate (lower forage mass).
Resumo:
Inadequate usage can degrade natural resources, particularly soils. More attention has been paid to practices aiming at the recovery of degraded soils in the last years, e.g, the use of organic fertilizers, liming and introduction of species adapted to adverse conditions. The purpose of this study was therefore to investigate the recovery of physical properties of a Red Latosol (Oxisol) degraded by the construction of a hydroelectric power station. In the study area, a soil layer about 8m thick had been withdrawn by heavy machines leading not only to soil compaction, but resulting in high-degree degradation. The experiment was arranged in a completely randomized design with nine treatments and four replications. The treatments consisted of: 1- soil mobilization by tilling (to ensure the effect of mechanical mobilization in all treatments) without planting, but growth of spontaneous vegetation; 2- Black velvet bean (Stizolobium aterrimum Piper & Tracy); 3- Pigeonpea (Cajanus cajan (L.) DC); 4- Liming + black velvet bean; 5-Liming + pigeonpea until 1994, when replaced by jack bean (Canavalia ensiformis); 6- Liming + gypsum + black velvet bean; 7- Liming + gypsum + pigeonpea until 1994, when replaced by jack bean; and two controls as reference: 8- Native Cerrado vegetation and 9- bare soil (no tilling and no planting), left under natural conditions and in this situation, without spontaneous vegetation. In treatments 1 through 7, the soil was tilled. Treatments were installed in 1992 and left unmanaged for seven years, until brachiaria (Brachiaria decumbens) was planted in all plots in 1999. Seventeen years after implantation, the properties soil macroporosity, microporosity, total porosity, bulk density and aggregate stability were assessed in the previously described treatments in the soil layers 0.00-0.10; 0.10-0.20 and 0.20-0.40 m, and soil Penetration Resistance and soil moisture in 0.00-0.15 and 0.15-0.30 m. The plants were evaluated for: brachiaria dry matter and spontaneous growth of native tree species in the plots as of 2006. Results were analyzed by variance analysis and Tukey´s test at 5 % for mean comparison. In all treatments, except for the bare soil (no recovery measures), ongoing recovery of the degraded soil physical properties was observed. Macroporosity, soil bulk density and total porosity were good soil quality indicators. The occurrence of spontaneous native species indicated the soil recovery process. The best adapted species was Machaerium acutifolium Vogel, with the largest number of plants and most advanced development; the dry matter production of B. decumbens in recovering soil was similar to normal conditions, evidencing soil recovery.
Resumo:
The correct use of closed field chambers to determine N2O emissions requires defining the time of day that best represents the daily mean N2O flux. A short-term field experiment was carried out on a Mollisol soil, on which annual crops were grown under no-till management in the Pampa Ondulada of Argentina. The N2O emission rates were measured every 3 h for three consecutive days. Fluxes ranged from 62.58 to 145.99 ∝g N-N2O m-2 h-1 (average of five field chambers) and were negatively related (R² = 0.34, p < 0.01) to topsoil temperature (14 - 20 ºC). N2O emission rates measured between 9:00 and 12:00 am presented a high relationship to daily mean N2O flux (R² = 0.87, p < 0.01), showing that, in the study region, sampling in the mornings is preferable for GHG.
Resumo:
Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si) fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L) were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si), three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay), with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI) of sugarcane increased over time, and was highest in RA.
Resumo:
There are currently many devices and techniques to quantify trace elements (TEs) in various matrices, but their efficacy is dependent on the digestion methods (DMs) employed in the opening of such matrices which, although "organic", present inorganic components which are difficult to solubilize. This study was carried out to evaluate the recovery of Fe, Zn, Cr, Ni, Cd and Pb contents in samples of composts and cattle, horse, chicken, quail, and swine manures, as well as in sewage sludges and peat. The DMs employed were acid digestion in microwaves with HNO3 (EPA 3051A); nitric-perchloric digestion with HNO3 + HClO4 in a digestion block (NP); dry ashing in a muffle furnace and solubilization of residual ash in nitric acid (MDA); digestion by using aqua regia solution (HCl:HNO3) in the digestion block (AR); and acid digestion with HCl and HNO3 + H2O2 (EPA 3050). The dry ashing method led to the greatest recovery of Cd in organic residues, but the EPA 3050 protocol can be an alternative method for the same purpose. The dry ashing should not be employed to determine the concentration of Cr, Fe, Ni, Pb and Zn in the residues. Higher Cr and Fe contents are recovered when NP and EPA 3050 are employed in the opening of organic matrices. For most of the residues analyzed, AR is the most effective method for recovering Ni. Microwave-assisted digestion methods (EPA3051 and 3050) led to the highest recovery of Pb. The choice of the DM that provides maximum recovery of Zn depends on the organic residue and trace element analyzed.
Resumo:
The construction of a soil after surface coal mining involves heavy machinery traffic during the topographic regeneration of the area, resulting in compaction of the relocated soil layers. This leads to problems with water infiltration and redistribution along the new profile, causing water erosion and consequently hampering the revegetation of the reconstructed soil. The planting of species useful in the process of soil decompaction is a promising strategy for the recovery of the soil structural quality. This study investigated the influence of different perennial grasses on the recovery of reconstructed soil aggregation in a coal mining area of the Companhia Riograndense de Mineração, located in Candiota-RS, which were planted in September/October 2007. The treatments consisted of planting: T1- Cynodon dactylon cv vaquero; T2 - Urochloa brizantha; T3 - Panicum maximun; T4 - Urochloa humidicola; T5 - Hemarthria altissima; T6 - Cynodon dactylon cv tifton 85. Bare reconstructed soil, adjacent to the experimental area, was used as control treatment (T7) and natural soil adjacent to the mining area covered with native vegetation was used as reference area (T8). Disturbed and undisturbed soil samples were collected in October/2009 (layers 0.00-0.05 and 0.10-0.15 m) to determine the percentage of macro- and microaggregates, mean weight diameter (MWD) of aggregates, organic matter content, bulk density, and macro- and microporosity. The lower values of macroaggregates and MWD in the surface than in the subsurface layer of the reconstructed soil resulted from the high degree of compaction caused by the traffic of heavy machinery on the clay material. After 24 months, all experimental grass treatments showed improvements in soil aggregation compared to the bare reconstructed soil (control), mainly in the 0.00-0.05 m layer, particularly in the two Urochloa treatments (T2 and T4) and Hemarthria altissima (T5). However, the great differences between the treatments with grasses and natural soil (reference) indicate that the recovery of the pre-mining soil structure could take decades.
Resumo:
ABSTRACT The removal of thick layers of soil under native scrubland (Cerrado) on the right bank of the Paraná River in Selvíria (State of Mato Grosso do Sul, Brazil) for construction of the Ilha Solteira Hydroelectric Power Plant caused environmental damage, affecting the revegetation process of the stripped soil. Over the years, various kinds of land use and management systems have been tried, and the aim of this study was to assess the effects of these attempts to restore the structural quality of the soil. The experiment was conducted considering five treatments and thirty replications. The following treatments were applied: stripped soil without anthropic intervention and total absence of plant cover; stripped soil treated with sewage sludge and planted to eucalyptus and grass a year ago; stripped soil developing natural secondary vegetation (capoeira) since 1969; pastureland since 1978, replacing the native vegetation; and soil under native vegetation (Cerrado). In the 0.00-0.20 m layer, the soil was chemically characterized for each experimental treatment. A 30-point sampling grid was used to assess soil porosity and bulk density, and to assess aggregate stability in terms of mean weight diameter (MWD) and geometric mean diameter (GMD). Aggregate stability was also determined using simulated rainfall. The results show that using sewage sludge incorporated with a rotary hoe improved the chemical fertility of the soil and produced more uniform soil pore size distribution. Leaving the land to develop secondary vegetation or turning it over to pastureland produced an intermediate level of structural soil quality, and these two treatments produced similar results. Stripped soil without anthropic intervention was of the lowest quality, with the lowest values for cation exchange capacity (CEC) and macroporosity, as well as the highest values of soil bulk density and percentage of aggregates with diameter size <0.50 mm, corroborated by its lower organic matter content. However, the percentage of larger aggregates was higher in the native vegetation treatment, which boosted MWD and GMD values. Therefore, assessment of some land use and management systems show that even decades after their implementation to mitigate the degenerative effects resulting from the installation of the Hydroelectric Plant, more efficient approaches are still required to recover the structural quality of the soil.
Resumo:
The objective of this work was to evaluate Zn use efficiency by upland rice genotypes. The experiment was carried out in a greenhouse, with ten upland rice genotypes grown on an Oxisol (Typic Hapludox) with no application, and with application of 10 mg kg-1 Zn, applied as zinc sulfate. Shoot dry weight, grain yield, Zn harvest index, Zn concentration in shoot and in grain were significantly influenced by soil Zn levels and genotypes. However, panicle number and grain harvest index were significantly affected only by genotype. Genotypes CNA8557, CNA8540 and IR42 produced higher grain yield than other genotypes. Genotypes showed significant variability in Zn recovery efficiency. On average, 13% of the applied Zn was recovered by upland rice genotypes. Genotypes with high Zn recovery efficiency could be used in breeding of Zn efficient upland rice cultivars. Higher level of soil Zn (10 mg kg-1) increased significantly the concentrations of plant Cu and Mn. However, Fe concentrations in plant (shoot and grain) were not influenced by soil Zn levels.
Resumo:
Abstract: The objective of this work was to identify polymorphic simple sequence repeat (SSR) markers for varietal identification of cotton and evaluation of the genetic distance among the varieties. Initially, 92 SSR markers were genotyped in 20 Brazilian cotton cultivars. Of this total, 38 loci were polymorphic, two of which were amplified by one primer pair; the mean number of alleles per locus was 2.2. The values of polymorphic information content (PIC) and discrimination power (DP) were, on average, 0.374 and 0.433, respectively. The mean genetic distance was 0.397 (minimum of 0.092 and maximum of 0.641). A panel of 96 varieties originating from different regions of the world was assessed by 21 polymorphic loci derived from 17 selected primer pairs. Among these varieties, the mean genetic distance was 0.387 (minimum of 0 and maximum of 0.786). The dendrograms generated by the unweighted pair group method with arithmetic average (UPGMA) did not reflect the regions of Brazil (20 genotypes) or around the world (96 genotypes), where the varieties or lines were selected. Bootstrap resampling shows that genotype identification is viable with 19 loci. The polymorphic markers evaluated are useful to perform varietal identification in a large panel of cotton varieties and may be applied in studies of the species diversity.
Resumo:
OBJECTIVE: Our purpose was to assess 4th year radiology residents' perception of the optimal imaging modality to investigate neoplasm and trauma. MATERIALS AND METHODS: Twenty-seven 4th year radiology residents from four residency programs were surveyed. They were asked about the best imaging modality to evaluate the brain and spine, lungs, abdomen, and the musculoskeletal system. Imaging modalities available were MRI, CT, ultrasound, PET, and X-ray. All findings were compared to the ACR appropriateness criteria. RESULTS: MRI was chosen as the best imaging modality to evaluate brain, spine, abdominal, and musculoskeletal neoplasm in 96.3%, 100%, 70.4%, and 63% of residents, respectively. CT was chosen by 88.9% to evaluate neoplasm of the lung. Optimal imaging modality to evaluate trauma was CT for brain injuries (100%), spine (92.6%), lung (96.3%), abdomen (92.6%), and major musculoskeletal trauma (74.1%); MRI was chosen for sports injury (96.3%). There was agreement with ACR appropriateness criteria. CONCLUSION: Residents' perception of the best imaging modalities for neoplasm and trauma concurred with the appropriateness criteria by the ACR.
Resumo:
Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.
Resumo:
This work presents a study on the determination of the optimal experimental conditions for processing spent commercial zeolites in order to recover lanthanide elements and eventually other elements. The process is based on the fusion of the sample with potassium hydrogenosulfate (KHSO4). Three experimental parameters were studied: temperature, reaction time and catalyst/flux mass ratio. After fusion the solid was dissolved in water and the amount of insoluble matter was used to determine the efficiency of the process. The optimized experimental parameters depend on the composition of the sample processed. Under such conditions the insoluble residue corresponds to SiO2. Lanthanide elements and aluminum present in solution were isolated by conventional precipitation techniques; the yields were at least 75 wt%. The final generated wastes correspond to neutral colorless solutions containing alkali chlorides/sulfates and solids that can be disposed of in industrial dumps.