18 resultados para non-process elements
Resumo:
The effects of sucrose and water contents on cassava flour processed by extrusion at varied concentrations of sucrose (0-20% w/w) and water (28-42% w/w) were studied by applying response surface methodology. The extrusion of the mixtures was performed in a twin screw extruder fitted to a torque rheometer. The specific mechanical energy (SME) dissipated inside a conical twin-screw extruder was measured. Water absorption index (WAI), water solubility index (WSI) and paste viscosity readings (cold viscosity (CV), peak viscosity (PV), breakdown (BD) and set back (SB)) during a gelatinization-retrogradation cycle measured in a Rapid Visco Analyzer were determined on non-directly extruded products. The results indicated that SME and WSI decreased as a function of water and sucrose contents. WAI and pasting properties were influenced by water content. A non antiplasticizing effect of the sucrose content was observed on pasting properties, suggesting that sucrose did not reduce the availability of water available for gelatinizing cassava flour during the extrusion process. The nature of the optimum point was characterized as a saddle point for WAI, WSI, PV and BD, whereas SME showed a maximum and CV and SB a minimum. The results indicated to be valuable for the production of non-expanded cassava flour extrudates with desirable functional properties for specific end users.
Resumo:
This paper evaluated the influence of temperature and concentration of the sucrose syrup on the pre-osmotic dehydration of peaches. Physical (colour and texture) and chemical variables (soluble solid content; total sugar, reducing and non-reducing sugar contents; and titratable acidity) were investigated, as well as the osmotic dehydration parameters (loss of weight and water; solids incorporation). An experimental central composite design was employed varying the temperature (from 30 to 50 ºC) and concentration (from 45 to 65 ºBrix) and maintaining the syrup to fruit ratio (4:1), process time (4 hours), and format (slices). The degree of acceptance was used in the sensory analysis evaluating the following characteristics: appearance, taste, texture, colour, and overall quality using a hedonic scale. The results were modelled using the Statistica program (v. 6.0) and the Response Surface Methodology. The mathematical models of the following dimensionless variations yielded significant (p < 0.05) and predictive results: soluble solids content, total and non-reducing sugar contents, titratable acidity, colour parameter L*, and water loss. The models of the attributes colour and appearance yielded significant (p < 0.10) but not predictive results. Temperature was the prevalent effect in the models. The process conditions in the range from 50 to 54.1 ºC and from 45 to 65 ºBrix led to greater water losses and better sensory performances.
Resumo:
Combining prebiotics and probiotic microorganisms improve quality in the formulation of foods. In this paper, the characteristics of goat milk and symbiotic yogurt were studied. Raw goat milk was analyzed and the skimming process was optimized. For the formulation of a potentially non-fat symbiotic yogurt made with skimmed goat milk, inulin, gelatin, sugar, and Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei subsp. rhamnoshus. Chemical characteristics, acceptability, and viability of lactic acid bacteria and probiotic culture were assessed. The protein and fat content of the raw milk was 2.90 and 3.56 g/100 mL, respectively. The optimum skimming process was obtained at 9,800 rpm and 4 °C for 15 minutes. The product formulated had a protein and fat content of 4.04 to 0.04 g/100 mL, good sensory properties, and acceptability of 95%. The lactic bacteria count was 9 × 10(7) CFU mL- 1, and probiotic culture count was higher than 1 × 10(6) CFU mL- 1, which guarantees their effect and capacity to survive in the digestive tract and spread in the intestine. The yogurt was stable during the 21 days of storage. Therefore, this study shows that goat milk yogurt is an adequate delivery vehicle of the probiotic culture L. casei and inulin.