222 resultados para nitrogen sources


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seeds with a high concentration of P or Mo can improve the growth and N accumulation of the common bean (Phaseolus vulgaris L.), but the effect of enriched seeds on biological N2 fixation has not been established yet. This study aimed to evaluate the effect of seeds enriched with P and Mo on growth and biological N2 fixation of the common bean by the 15N isotope dilution technique. An experiment was carried out in pots in a 2 x 3 x 2 x 2 factorial design in randomized blocks with four replications, comprising two levels of soil applied P (0 and 80 mg kg-1), three N sources (without N, inoculated with rhizobia, and mineral N), two seed P concentrations (low and high), and two seed Mo concentrations (low and high). Non-nodulating bean and sorghum were used as non-fixing crops. The substrate was 5.0 kg of a Red Latosol (Oxisol) previously enriched with 15N and mixed with 5.0 kg of sand. Plants were harvested 41 days after emergence. Seeds with high P concentration increased the growth and N in shoots, particularly in inoculated plants at lower applied P levels. Inoculated plants raised from high P seeds showed improved nodulation at both soil P levels. Higher soil P levels increased the percentage of N derived from the atmosphere (%Ndfa) in bean leaves. Inoculation with the selected strains increased the %Ndfa. High seed P increased the %Ndfa in inoculated plants at lower soil P levels. High seed Mo increased the %Ndfa at lower soil P levels in plants that did not receive inoculation or mineral N. It is concluded that high seed P concentration increases the growth, N accumulation and the contribution of the biological N2 fixation in the common bean, particularly in inoculated plants grown at lower soil P availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen fertilizers increase the nitrous oxide (N2O) emission and can reduce the methane (CH4) oxidation from agricultural soils. However, the magnitude of this effect is unknown in Southern Brazilian edaphoclimatic conditions, as well as the potential of different sources of mineral N fertilizers in such an effect. The aim of this study was to investigate the effects of different mineral N sources (urea, ammonium sulphate, calcium nitrate, ammonium nitrate, Uran, controlled- release N fertilizer, and urea with urease inhibitor) on N2O and CH4 fluxes from Gleysol in the South of Brazil (Porto Alegre, RS), in comparison to a control treatment without a N application. The experiment was arranged in a randomized block with three replications, and the N fertilizer was applied to corn at the V5 growth stage. Air samples were collected from a static chambers for 15 days after the N application and the N2O and CH4 concentration were determined by gas chromatography. The topmost emissions occurred three days after the N fertilizer application and ranged from 187.8 to 8587.4 µg m-2 h-1 N. The greatest emissions were observed for N-nitric based fertilizers, while N sources with a urease inhibitor and controlled release N presented the smallest values and the N-ammonium and amidic were intermediate. This peak of N2O emissions was related to soil NO3--N (R² = 0.56, p < 0.08) when the soil water-filled pore space was up to 70 % and it indicated that N2O was predominantly produced by a denitrification process in the soil. Soil CH4 fluxes ranged from -30.1 µg m-2 h-1 C (absorption) to +32.5 µg m-2 h-1 C (emission), and the accumulated emission in the period was related to the soil NH4+-N concentration (R² = 0.82, p < 0.001), probably due to enzymatic competition between nitrification and metanotrophy processes. Despite both of the gas fluxes being affected by N fertilizers, in the average of the treatments, the impact on CH4 emission (0.2 kg ha-1 equivalent CO2-C ) was a hundredfold minor than for N2O (132.8 kg ha-1 equivalent CO2-C). Accounting for the N2O and CH4 emissions plus energetic costs of N fertilizers of 1.3 kg CO2-C kg-1 N regarding the manufacture, transport and application, we estimated an environmental impact of N sources ranging from 220.4 to 664.5 kg ha-1 CO2 -C , which can only be partially offset by C sequestration in the soil, as no study in South Brazil reported an annual net soil C accumulation rate larger than 160 kg ha-1 C due to N fertilization. The N2O mitigation can be obtained by the replacement of N-nitric sources by ammonium and amidic fertilizers. Controlled release N fertilizers and urea with urease inhibitor are also potential alternatives to N2O emission mitigation to atmospheric and systematic studies are necessary to quantify their potential in Brazilian agroecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: 1) quantification of biological nitrogen fixation (BNF) in hairy vetch; 2) estimation of the N release rate from hairy vetch residues on the soil surface; 3) quantification of 15N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two-year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrófico arênico (Brazilian Soil Classification), at a mean annual temperature of 18 ºC and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha-1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha-1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha-1, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha-1, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seeds of common bean (Phaseolus vulgaris) with high molybdenum (Mo) concentration can supply Mo plant demands, but to date no studies have concomitantly evaluated the effects of Mo-enriched seeds on plants inoculated with rhizobia or treated with N fertilizer. This work evaluated the effects of seed Mo on growth and N acquisition of bean plants fertilized either by symbiotic N or mineral N, by measuring the activities of nitrogenase and nitrate reductase and the contribution of biological N2 fixation at different growth stages. Seeds enriched or not with Mo were sown with two N sources (inoculated with rhizobia or fertilized with N), in pots with 10 kg of soil. In experiment 1, an additional treatment consisted of Mo-enriched seeds with Mo applied to the soil. In experiment 2, the contribution of N2 fixation was estimated by 15N isotope dilution. Common bean plants grown from seeds with high Mo concentration flowered one day earlier. Seeds with high Mo concentration increased the leaf area, shoot mass and N accumulation, with both N sources. The absence of effects of Mo application to the soil indicated that Mo contents of Mo-enriched seeds were sufficient for plant growth. Seeds enriched with Mo increased nitrogenase activity at the vegetative stage of inoculated plants, and nitrate reductase activity at late growth stages with both N sources. The contribution of N2 fixation was 17 and 61 % in plants originating from low- or high-Mo seeds, respectively. The results demonstrate the benefits of sowing Mo-enriched seeds on growth and N nutrition of bean plants inoculated with rhizobia or fertilized with mineral N fertilizer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nickel is a micronutrient involved in nitrogen metabolism and a constituent of the urease molecule. Plant growth and urease activity were evaluated in lettuce (Lactuca sativa L.) grown in soil-filled pots in a 2 x 8 factorial design with two nitrogen (N) sources and eight Ni rates, with five replications. Nitrogen was applied at 200 mg dm-3 (half the dose incorporated into the soil at seedling transplanting and half top-dressed later) using the sources NH4NO3 (AN) and CO(NH2)2 (Ur). The Ni treatments (0, 2, 4, 8, 12, 16, 24 and 32 mg dm-3) were applied as NiCl2. The shoot dry-matter yield, leaf urease activity, Ni levels in the lettuce leaves and Ni levels extracted from soil with Mehlich-3 (M-3) and DTPA were determined. In the plants supplied with AN, the shoot dry-matter yield was higher than in those supplied with Ur. There was no difference in shoot dry matter in response to soil-applied Ni. The leaf urease activity increased with Ni application, regardless of the N source. The extractions with M-3 and DTPA were efficient to evaluate Ni availability for lettuce in the Red-Yellow Latosol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Brazilian agriculture, urea is the most commonly used nitrogen (N) source, in spite of having the disadvantage of losing considerable amounts of N by ammonia-N volatilization. The objectives of this study were to evaluate: N lossby ammonia volatilization from: [urea coated with copper sulfate and boric acid], [urea coated with zeolite], [urea+ammonium sulfate], [urea coated with copper sulfate and boric acid+ammonium sulfate], [common urea] and [ammonium nitrate]; and the effect of these N source son the maize yield in terms of amount and quality. The treatments were applied to the surface of a soil under no-tillage maize, in two growing seasons. The first season (2009/2010) was after a maize crop (maize straw left on the soil surface) and the second cycle (2012/2011) after a soybean crop. Due to the weather conditions during the experiments, the volatilization of ammonia-N was highest in the first four days after application of the N sources. Of all urea sources, under volatilization-favorable conditions, the loss of ammonia from urea coated with copper sulfate and boric acid was lowest, while under high rainfall, the losses from the different urea sources was similar, i.e., an adequate rainfall was favorablet o reduce volatilization. The ammonia volatilization losses were greatest in the first four days after application. Maize grain yield differed due to N application and in the treatments, but this was only observed with cultivation of maize crop residues in 2009/2010. The combination of ammonium+urea coated with copper sulfate and boric acid optimized grain yield compared to the other urea treatments. The crude protein concentration in maize was not influenced by the technologies of urea coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal manure is applied to the soil as a nutrient source, especially of nitrogen, to plants. However, manure application rates can be reduced with the use of N fertilizer in topdressing. The aim of this study was to evaluate crop responses to different application rates of animal manure sources, used alone and supplemented with mineral N topdressing, in a no-tillage system. The study was carried out from 2005 to 2008 on a Hapludalf soil. The treatments consisted of rates of 10, 20 and 30 m³ ha-1 of pig slurry (PS), and of 1 and 2 t ha-1 of turkey manure (TM), applied alone and supplemented with topdressed N fertilizer (TNF), as well as two controls, mineral fertilization (NPK) and one control without fertilizer application. Grain yield in common bean and maize, and dry matter yield and nutrient accumulation in common bean, maize and black oat crops were evaluated. Nitrogen application in topdressing in maize and common bean, especially when PS was used at rates of 20 and 30 m³ ha-1, and TM, at 2 t ha-1, proved effective in increasing the crop grain yields, showing the viability of the combined use of organic and industrialized mineral sources. Nitrogen accumulation in maize and common bean tissues was the indicator most strongly related to grain yield, in contrast with the apparent nutrient recovery, which was not related to the N, P and K quantities applied in the organic sources. No clear residual effect of N topdressing of maize and common bean was observed on the dry matter yield of black oat grown in succession to the main crops with PS and TM applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crop residues on the soil surface of no-till systems can intensify ammonia volatilization from N fertilizers applied to cereal crops. This study assessed the magnitude of N losses through ammonia volatilization from urea applied to no-till winter (wheat) and summer crops (maize) on a Typic Hapludox in the south-central region of Paraná, southern Brazil. In addition, the potential of alternative N sources (urea with urease inhibitor, liquid fertilizer, ammonium nitrate and ammonium sulfate) and different urea managements (fertilizer applied in the morning or afternoon) were evaluated. Two experiments with maize and wheat were carried out for two years, arranged in a randomized block design with four replications. Nitrogen volatilization losses were assessed with a semi-open static collector until 21 days after fertilization. In winter, the losses were low (<5.5 % of applied N) for all N sources, which were not distinguishable, due to the low temperatures. In the summer, volatilization rates from urea were higher than in the winter, but did not exceed 15 % of applied N. The main factor decreasing N losses in the summer was the occurrence of rainfall in the first five days after fertilization. Urea with urease inhibitor, nitrate and ammonium sulfate were efficient to decrease ammonia volatilization in maize, whereas the application time (morning or afternoon) had no influence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were to evaluate nitrogen utilization by sugarcane ratoon from two sources, applied urea and sugarcane straw covering soil surface (trash blanket), besides the recovery of N from both sources in the soil-plant system. The following treatments were established in a randomized block design with four replicates: T1, vinasse-urea (100 kg ha-1 of urea-N) mixture applied on the total area of the soil covered with cane trash labeled with 15N; T2, vinasse-urea mixture (urea labeled with 15N; 100 kg ha-1 of urea-N) applied on the total area of the soil covered with non-labeled sugarcane trash; and T3, urea-15N (100 kg ha-1 of urea-N) applied in furrows at both sides of cane rows, with previous surface application of vinasse, onto soil without trash covering. The vinasse was applied at a rate of 100 m³ ha-1 in all treatments. The experiment was carried out on a Yellow Red Podzolic soil (Paleudalf), from October 1997 to August 1998, in Piracicaba, SP, Brazil. The nitrogen use efficiency of urea by the sugarcane ratoon was 21%, while that of the sugarcane straw was 9%. The main contributions of N from sugarcane trash, during one cycle, are the preservation and increase of the organic N in soil. The tendency for a lower accumulation of urea-N in the sugarcane plant, in the soil surface covered with sugarcane residue, was compensated by the assimilation of N from trash mineralization. Nitrogen derived from cane trash was more available to plants in the second half of the ratoon cycle

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation in nitrogen use strategies and photosynthetic pathways among vascular epiphyte families was addressed in a white-sand vegetation in the Brazilian Central Amazon. Foliar nitrogen and carbon concentrations and their isotopic composition (δ15N and δ13C, respectively) were measured in epiphytes (Araceae, Bromeliaceae and Orchidaceae) and their host trees. The host tree Aldina heterophylla had higher foliar N concentration and lower C:N ratio (2.1 ± 0.06% and 23.6 ± 0.8) than its dwellers. Tree foliar δ15N differed only from that of the orchids. Comparing the epiphyte families, the aroids had the highest foliar N concentration and lowest C:N ratios (1.4 ± 0.1% and 34.9 ± 4.2, respectively). The orchids had more negative foliar δ15N values (-3.5 ± 0.2‰) than the aroids (-1.9 ± 0.7‰) and the bromeliads (-1.1 ± 0.6‰). Within each family, aroid and orchid taxa differed in relation to foliar N concentrations and C:N ratios, whereas no internal variation was detected within bromeliads. The differences in foliar δ15N observed herein seem to be related to the differential reliance on the available N sources for epiphytes, as well as to the microhabitat quality within the canopy. In relation to epiphyte foliar δ13C, the majority of epiphytes use the water-conserving CAM-pathway (δ13C values around -17‰), commonly associated with plants that live under limited and intermittent water supply. Only the aroids and one orchid taxon indicated the use of C3-pathway (δ13C values around -30‰).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been two key initiatives taken in the last two decades in Brazil to create a counter-hegemonic project for the country. One initiative resulted from Brazil's business community and high-level State bureaucracy and aimed at forming a regional economic and political bloc that would guarantee and enlarge a relative independence from the hegemonic powers. The other resulted from the emergence of the new unionist movement in São Paulo and from the formation of Partido dos Trabalhadores and aimed at promoting radical democratization and reducing social exclusion. Both initiatives have created policies and changes that have converged to enhance Brazil's counter-hegemonic position as a regional and emerging power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for higher profitability in wheat crop with cost reduction technologies that may promote sustainability is an important matter in Brazilian agriculture. This study evaluated the profitability of no-tilled wheat, reducing nitrogen topdressing doses with the cultivation of green manure before the wheat crop. The experiment was carried out in Selvíria (MS), Brazil, in 2009/10. The experiment was arranged in a randomized block design with 36 treatments in splitplots and four replicates. The plots were formed by six types of green manure: Cajanus cajan L. BRS Mandarin, Crotalaria juncea L., Pennisetum americanum L. BRS 1501, fallow area and mixed cropping of Pennisetum americanum L. + Cajanus cajan L. and Pennisetum americanum L. + crotalaria which provided straw for no-tilled wheat in the winter, following the rice crop in the summer. The subplots were formed by six levels of topdressing nitrogen (0, 25, 50, 75, 100 and 125 kg N ha-1) using urea as a nitrogen source. The wheat grown after green manure in the previous winter crop, with no nitrogen topdressing and a rate of 25 kg ha-1 N, had more frequently production costs above the gross income. Wheat production cost after the mixed cropping Pennisetum americanum L. + Cajanus cajan L. and Pennisetum americanum L. + Crotalaria juncea L. from the previous winter crop, combined with nitrogen rates of 50 and 75 kg N ha-1, provided better profitability compared with the other green manures evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the high energy requirement and demand for non-renewable resources for the production of chemical fertilizers, added also to the environmental impact caused by the use of such products, it is important to intensify research on bio-based agricultural inputs. The use of nitrogen-fixing endophytic and phosphate solubilizing bacteria can provide these nutrients to the plants from the air and poorly soluble phosphorus sources, such as phosphate rock. The objective of this study was to evaluate the nutrition and initial growth of maize (Zea mays L.) in response to the inoculation of nitrogen-fixing and rock phosphate solubilizing endophytic bacteria, in single or mixed formulation, applied with vermicompost. The treatments containing bacteria, both diazotrophic and phosphate solubilizing, when compared to controls, showed higher levels of leaf nitrogen and phosphorus in maize, as well as higher growth characteristics. The application of vermicompost showed synergistic effect when combined with endophytic bacteria. Thus, the innovation of the combination of the studied factors may contribute to the early development of maize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological nitrogen fixation is an alternative to supply the nitrogen needed for maize. The objective of this study was to evaluate the development and yield of maize in response to inoculation with Azospirillum associated with nitrogen fertilization. We conducted two field experiments in the summer harvest, the first in the 2000/2001 crop year in the region of Marechal Cândido Rondon, under conventional tillage, and second in the 2002/2003 agricultural year in the region of Cascavel, under no tillage. The experimental design in both experiments was a randomized complete block, with four replications, 2x2x2 factorial, with two levels of nitrogen at sowing (zero and 20 kg ha-1), two levels of inoculum (zero and 200 g ha-1) and two levels of nitrogen in topdressing (zero and 100 kg ha-1). There was evaluated the height of ear insertion, total plant height, leaf N content, shoot dry biomass and grain yield. The height of ear insertion and total plant height were not influenced by the factors under study. Nitrogen fertilization at sowing increased the leaf N content, causing the opposite effect when combined with inoculation. Inoculation with Azospirillum in the absence of nitrogen, provide productivity increases of 15.4% and 7.4% for 2000/2001 and 2002/2003 crops, respectively. The inoculation provided productivity similar to that obtained with 100 kg ha-1 in topdressing in crop 2000/2001, while in association with the topdressing, reduced productivity and shoot dry biomass in crop 2002/2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.